2023 ANNUAL GROUNDWATER MONITORING, CORRECTIVE ACTION REPORT,

AND

STATISTICAL EVALUATION OF DETECTION MONITORING RESULTS

General Waste & Recycling, LLC Coal Combustion Residual Landfill

PREPARED BY:

526 CHESTNUT STREET VIRGINIA, MINNESOTA 55792 (218) 741-4290 NTS PROJECT 6385CC

January 2024

TABLE OF CONTENTS

PURPOSE	2
INTRODU	JCTION
HYDROG	EOLOGIC CONCEPTUAL MODEL2
	<i>Inits</i> 2
	logic Setting2
0 0	IMENTAL MONITORING SYSTEM
	WATER MONITORING SUMMARY
	ater Elevations and General Groundwater Flow Direction
	ssurance and Data Validation
Groundwi	ater Monitoring Results4
STATISTI	CAL ANALYSIS4
CONCLUS	SIONS AND RECOMMENDATIONS4
Figure 2 Figure 3 Figure 4 Figure 5	Site Vicinity Map (USGS Topographic Map) Site Location Map (Aerial Image) Site Detail Map Hydrograph April, 2023 Groundwater Flow Map October, 2023 Groundwater Flow Map
Table 2A Table 2B Table 3A Table 3B Table 3C	Groundwater Monitoring Well Details CCR Appendix III Parameters CCR Appendix IV Parameters Lab Results-General Parameters Lab Results-Metals Lab Results-Radium 2022 Updated Upper Prediction Limits
Appendix A Appendix B Appendix C	Analytical Laboratory Reports & Field Reports April 2023 & October 2023 Statistical Analysis

PURPOSE

The purpose of this document is to meet U.S. Code of Federal Regulation (CFR) requirements for General Waste & Recycling, LLC's (General Waste's) Keewatin, Minnesota, Coal Combustion Residual (CCR) landfill (the Facility) for preparation of an "Annual Groundwater Monitoring and Corrective Action Report" per CFR §257.90 (e).

INTRODUCTION

General Waste's Keewatin Facility consists of a composite lined industrial landfill (CCR Unit) and an unlined demolition debris disposal cell. The Facility is located on approximately 70 acres of land in: Township 57 North, Range 22 West, Section 25 of Itasca County, as shown on Figure 1, Site Vicinity Map and Figure 2, Site Location Map. The location of the active CCR Units and CCR groundwater monitoring system is shown on Figure 3, Site Detail Map.

HYDROGEOLOGIC CONCEPTUAL MODEL

Hydrogeologic conditions were investigated while conducting permitting activities for the Facility during 2013. An extensive investigation was completed at that time to refine the hydrologic model of the Facility in preparation of the installation of a groundwater monitoring system. The hydrogeologic investigation and groundwater monitoring system has been certified by a licensed professional engineer (PE) as meeting CRF 257.91 requirements and the certification has been posted on a CCR Website for the Facility per CFR 257.105(h)(3).

Geologic Units

Three (3) stratigraphic units have been identified for the hydrogeological conceptual model as follows:

- 1. Mine overburden stockpile unit that varies across the landfill footprint in depths ranging from 5 to 80 feet and consists of sand, silty-clayey sand, and sandy silty clay.
- 2. Native soil unit which consists of fine sand and silty sand near the top of the unit and generally grades to a silty medium grained sand with abundant gravel.
- 3. Mine tailings unit which consists of interlayered grey and black silt and fine sand sized taconite tailings. The mine tailings are approximately range from 10 to 26 feet thick and were placed in the tailings basin constructed directly to the west of the mine overburden stockpile.

The location of the mine overburden stockpile and the mine tailings (i.e., the Tailings Basin) are shown on Figure 2.

Hydrogeologic Setting

An unconfined aquifer exists below the Facility with the water table present within the mine overburden stockpile near the contact of the mine overburden stockpile unit with the native soil unit, except on the western edge of the permitted landfill boundary near MW-7 where the water table is within the tailings. Groundwater flow is generally to the east and southeast towards a ditch (Welcome Creek) located

adjacent to the Facility. Welcome Creek is considered a groundwater divide and is a discharge point for shallow unconfined groundwater.

ENVIRONMENTAL MONITORING SYSTEM

The CCR Groundwater Monitoring System (GMS) consists of four (4) water table monitoring wells as follows:

- MW-7 is an up-gradient (with respect to general groundwater flow direction) monitoring well; and,
- MW-8, MW-9, and MW-10 (replaced MW-3R) are down-gradient (with respect to general groundwater flow direction) monitoring wells.

The groundwater monitoring system and active CCR Units (Cell A and Cell B) are shown on Figure 3. Groundwater monitoring well details are summarized in Table 1, including static water level and potentiometric surface data (i.e., groundwater elevation data). MW-3R was abandoned during landfill expansion activities during the 2019 summer. MW-10 was constructed down-gradient of the landfill to replace MW-3R in the GMS.

GROUNDWATER MONITORING SUMMARY

CCR groundwater monitoring has been conducted semi-annually during the Spring and Fall of each year (i.e., during April/May and October, respectively). Groundwater monitoring was performed on April 25 and October 16, 2023 for CCR Appendix III parameters (Table 2A). Static water levels were obtained and groundwater elevations calculated for both groundwater monitoring events (Table 1). CCR groundwater monitoring will continue through the active life of the CCR Unit and post closure. CCR Unit post closure monitoring will be conducted for 30 years.

Groundwater Elevations and General Groundwater Flow Direction

Groundwater elevations summarized in Table 1 were graphed (see Figure 4 Hydrograph). Potentiometric surface (groundwater elevation) contour maps were created and general groundwater flow direction evaluated (Figures 5 and 6). Groundwater elevations fluctuated similarly in the upgradient well MW-7 and the downgradient well MW-10 with groundwater levels approximately 4 to 6 feet feet higher in the spring as compared to the fall event. Downgradient wells MW-8 and MW-9 showed less variability indicating a decrease of 1.25 and 0.85 feet, respectively between the April and October events.

Based on evaluation of the groundwater data, the general direction of groundwater flow is eastward (Figures 5 and 6) towards the ditch (Welcome Creek) and is consistent with historical groundwater flow. Evaluation of groundwater elevation trends will continue throughout the active life of the CCR Unit and post closure.

Quality Assurance and Data Validation

Quality control (QC) samples were included for the CCR monitoring events. QC samples include field blanks and field duplicates analyzed for the same parameters as the respective monitoring well. The QC samples are used to determine the integrity of the field sampling procedures and the validity of the analytical results. QC testing was consistent with expected results in 2023 with the field blank indicating

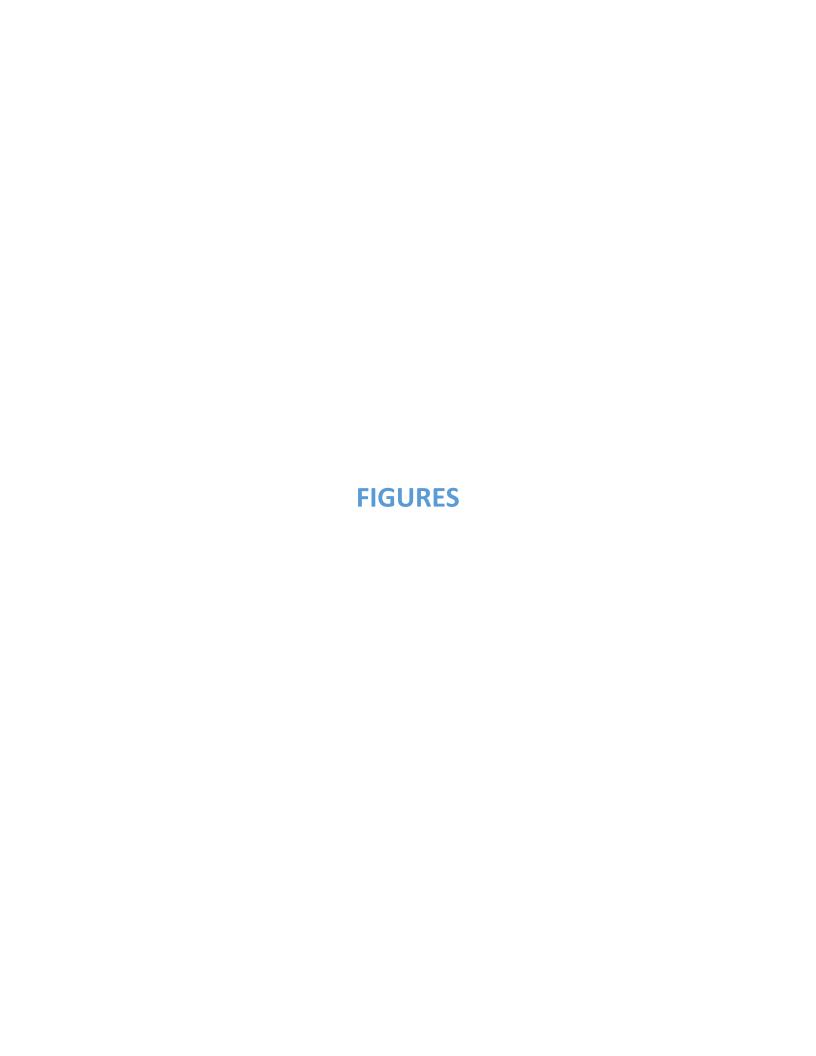
below detection limit values for all measured parameters and field duplicate samples matching within tolerance the detection monitoring results.

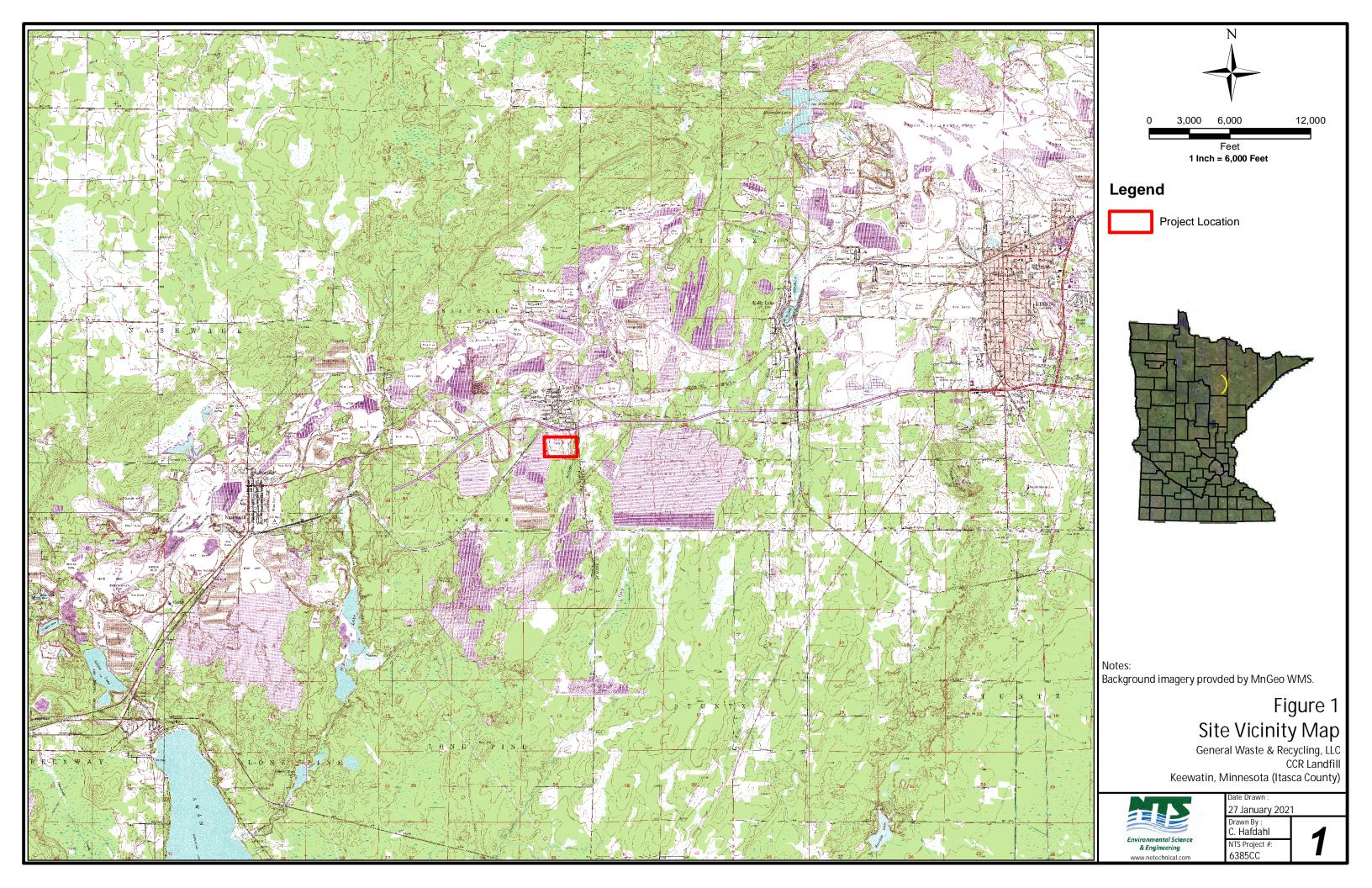
Groundwater Monitoring Results

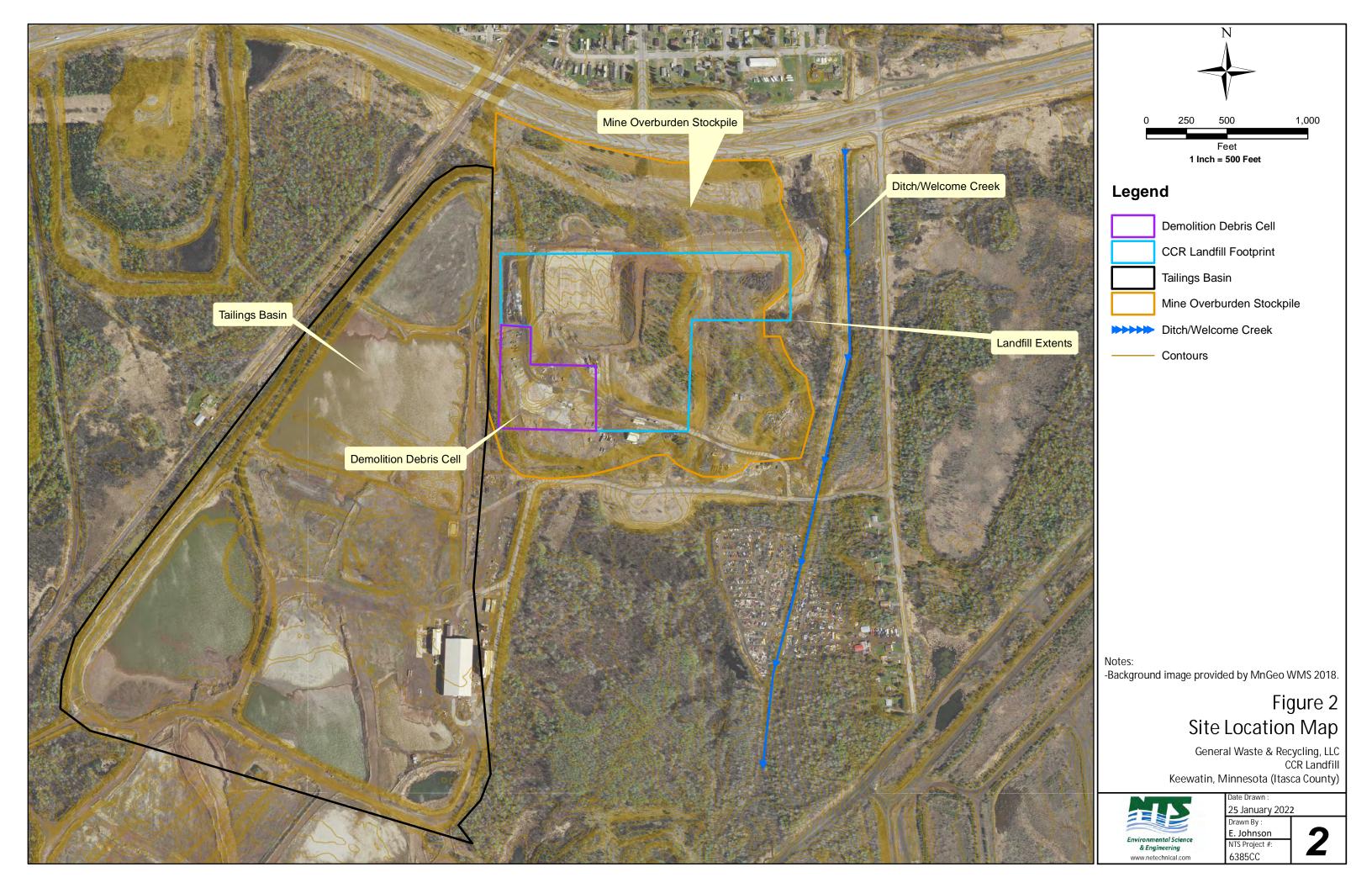
Groundwater monitoring results are summarized in Table 3 (CCR Lab Results Summary). Statistical analysis of the groundwater monitoring results, including determination of whether or not a Statistically Significant Increase (SSI) has been observed is presented below.

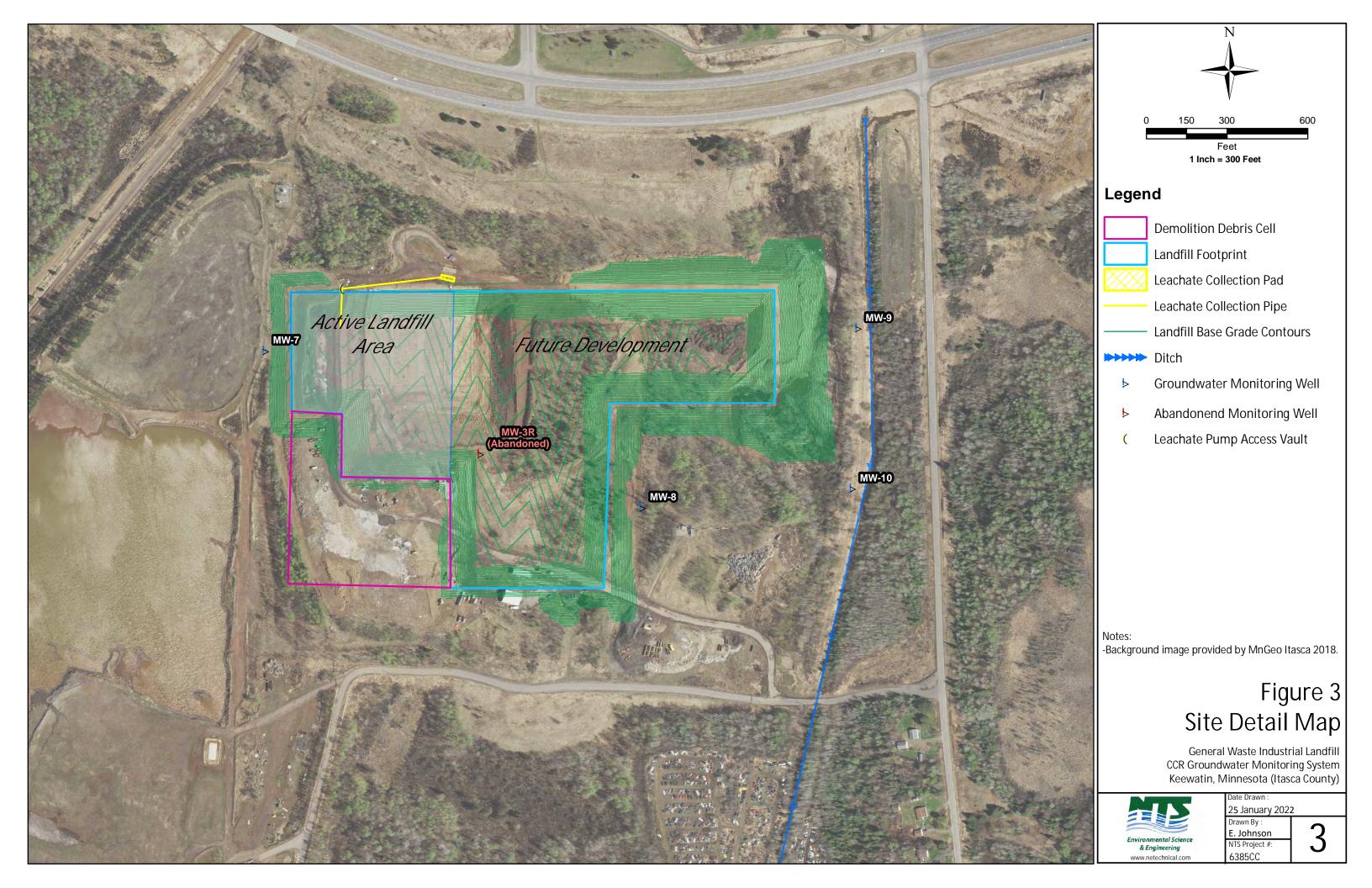
STATISTICAL ANALYSIS

Statistical Analysis was performed using the applicable field parameters and laboratory results collected during 2023 and guided by the Statistical Analysis Plan (SAP) written for the facility. No SSIs were determined to have occurred based on the statistical evaluation of 2023 groundwater monitoring results. In 2023, the full statistical evaluation was not able to be completed per the requirements set forth in 40 CFR 257.91 since the facility only had two downstream monitoring locations (MW-8 and MW-9) with sufficient background dataset through 2023. Beginning in 2024, a statistically significant dataset (8 or more samples) for MW-10 has been collected, and 3 downgradient wells will be assessed and the facility will again be in compliance with federal regulation. The statistical analyses completed for the April and October events are presented in Appendix B.


Following the SAP, the detection monitoring data collected in 2022 and 2023 was assessed and incorporated into the background dataset. With the completion of the October 2023 monitoring event, MW-10 has 8 complete monitoring events, which is considered an appropriate background dataset to conduct statistical analysis. Therefore, MW-10 data was assessed along with MW-7, MW-8, and MW-9 data to determine Upper Prediction Limits (UPLs) which are utilized to set the Trigger Values utilized to assess detection monitoring data.


After assessing the monitoring data, it was determined that intrawell assessment for MW-8, MW-9, and MW-10 is more appropriate and will provide a higher statistical power than an interwell analysis (comparing upgradient well MW-7 parameters to downgradient wells MW-8, MW-9, and MW-10 data). The groundwater monitored in MW-7 is very distinct from the groundwater monitored in MW-8, MW-9, and MW-10 with much higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) observed in the upgradient well MW-7.


The rationale and workflow utilized to update the background dataset and adjust Upper Prediction Limits (UPLs) for 2022 and 2023 monitoring can be found in Appendix C. The updated Trigger Values to be utilized for 2024 and 2025 monitoring can be seen in Table 4.


CONCLUSIONS AND RECOMMENDATIONS

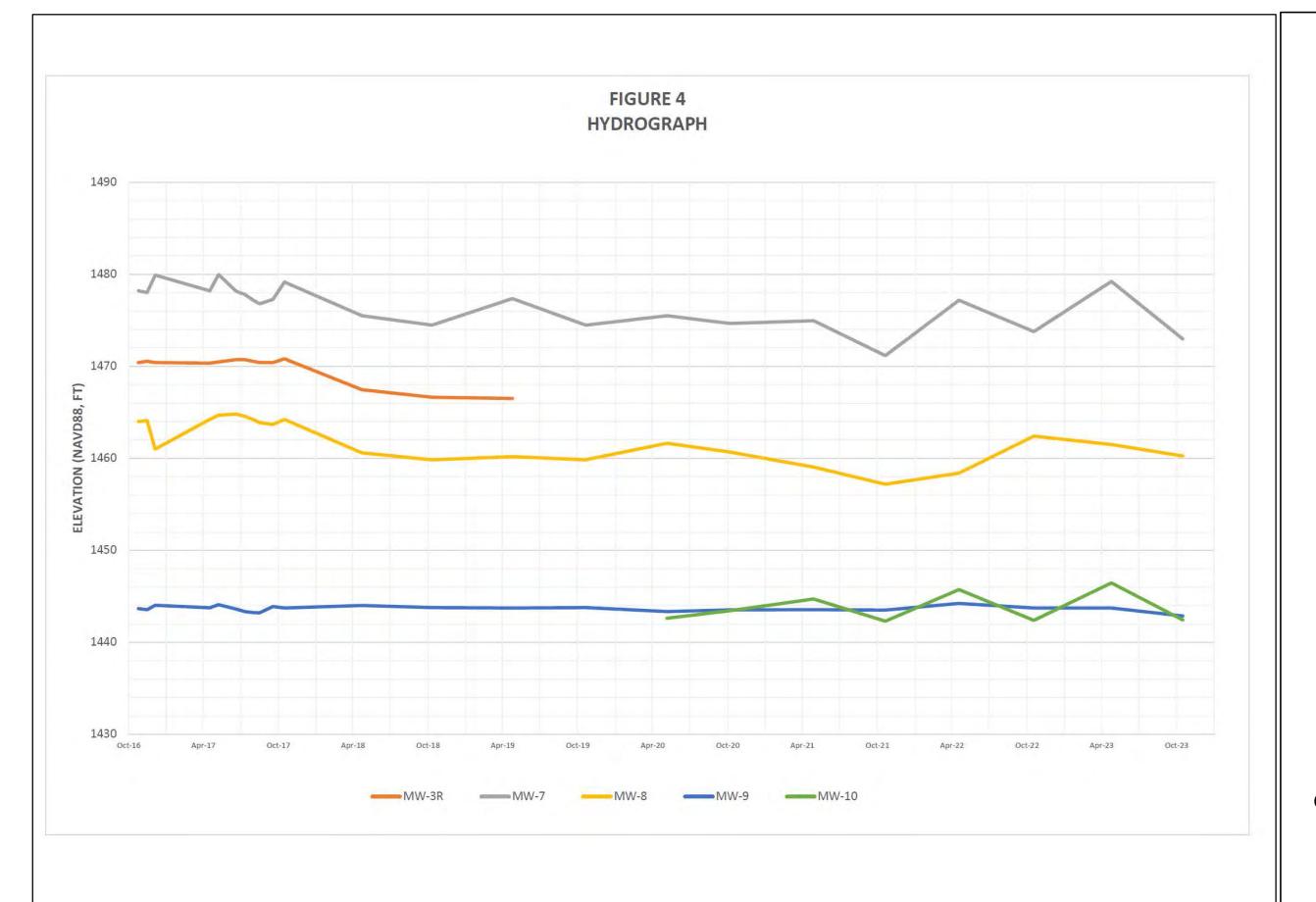
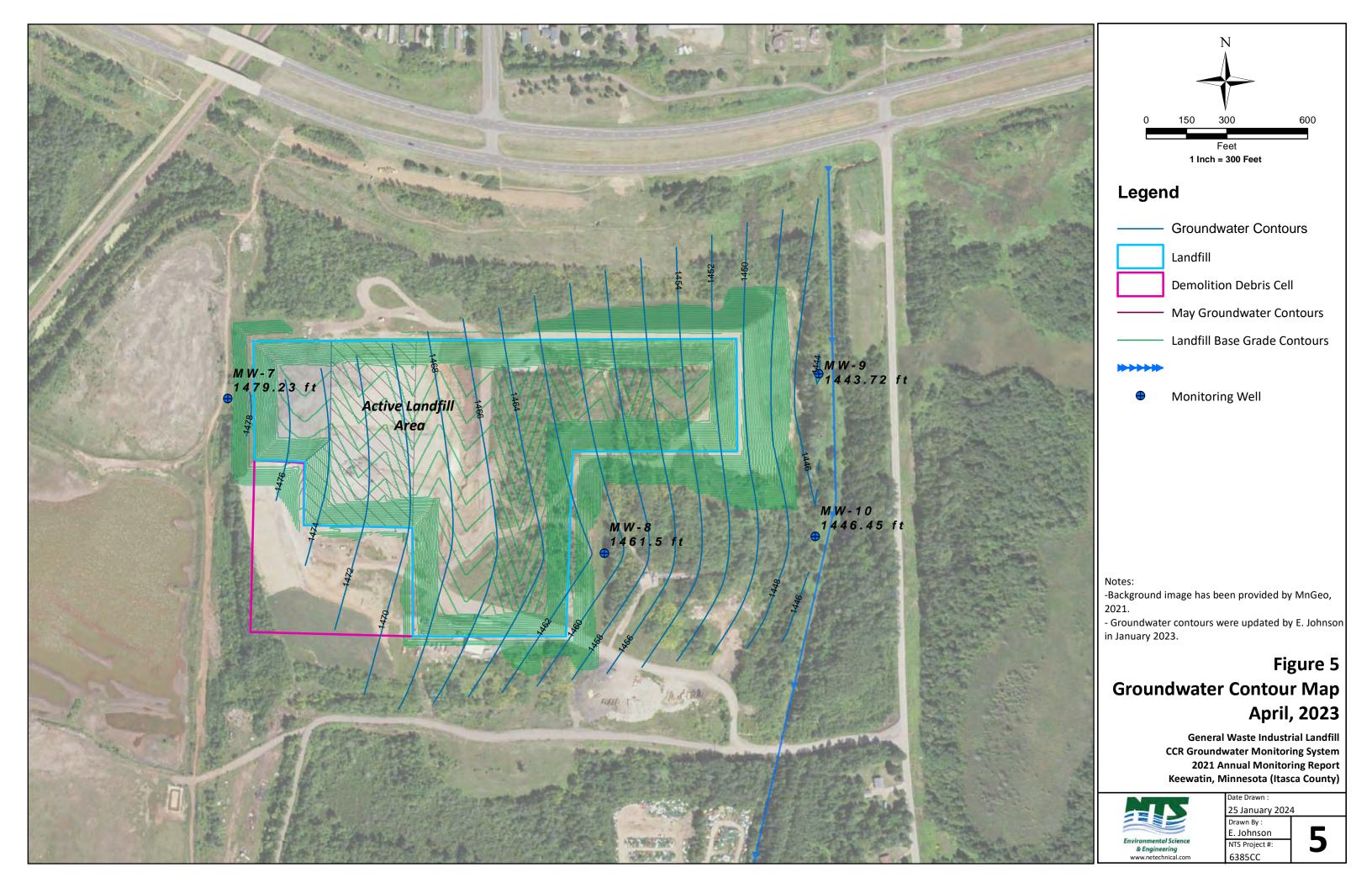
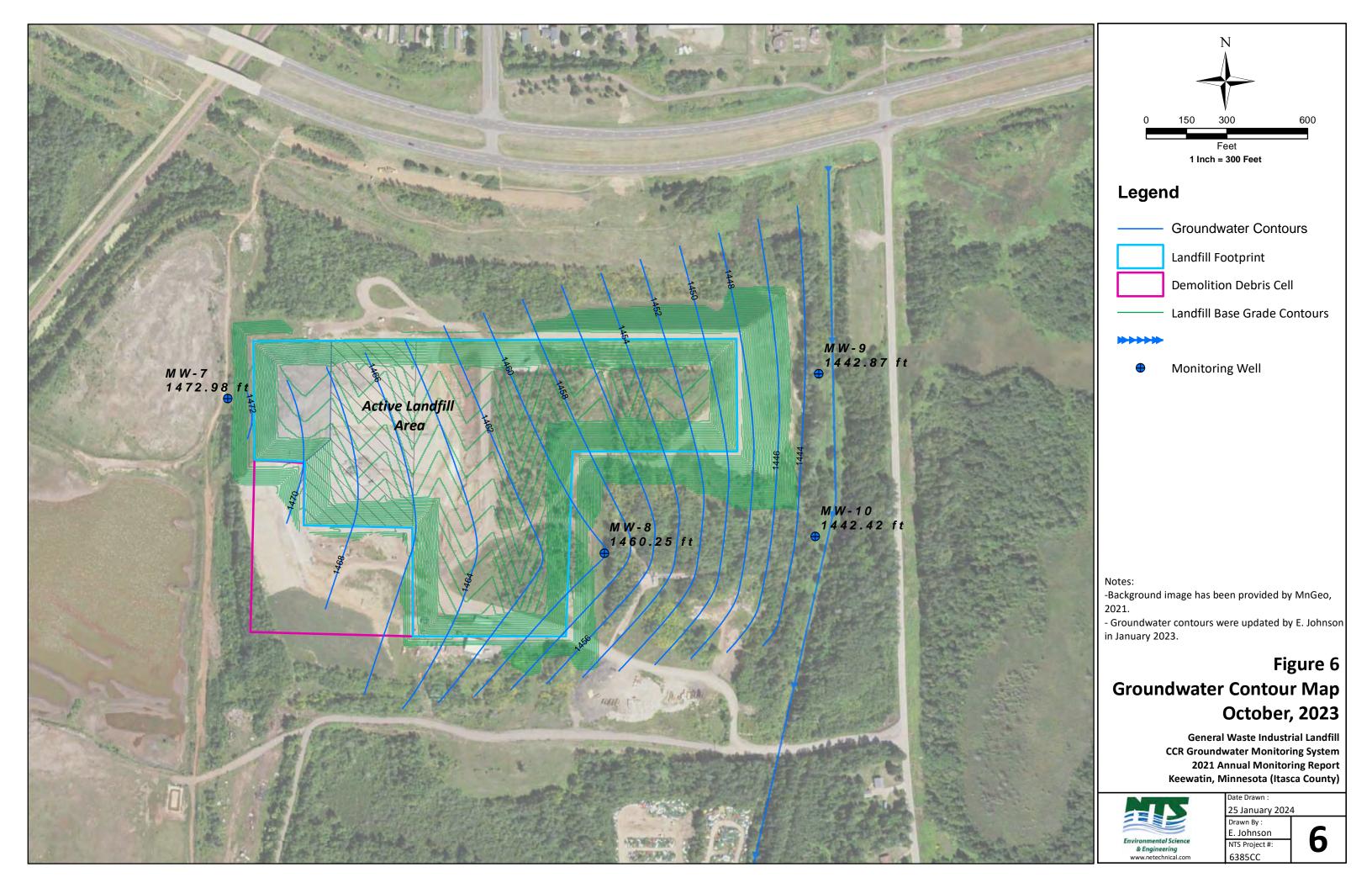

Review of the collected data indicates that a SSI of CCR Appendix III parameter concentrations has not occurred in the downgradient monitoring wells MW-08 and MW-09 (see Appendix B). Detection monitoring should continue as described in the Statistical Analysis Plan. Trigger values for MW-10 have been established and will be utilized to assess for a SSI occurrence in the 2024 detection monitoring events. The Groundwater Monitoring System is now in compliance with CRF 257.91 which requires a minimum of 3 down-gradient wells.

Figure 4 Groundwater Hydrograph


General Waste Industrial Landfill CCR Groundwater Monitoring System 2022 Annual Monitoring Report Keewatin, Minnesota (Itasca County)



January 25, 2024

Drawn By : E. Johnson

NTS Project #:

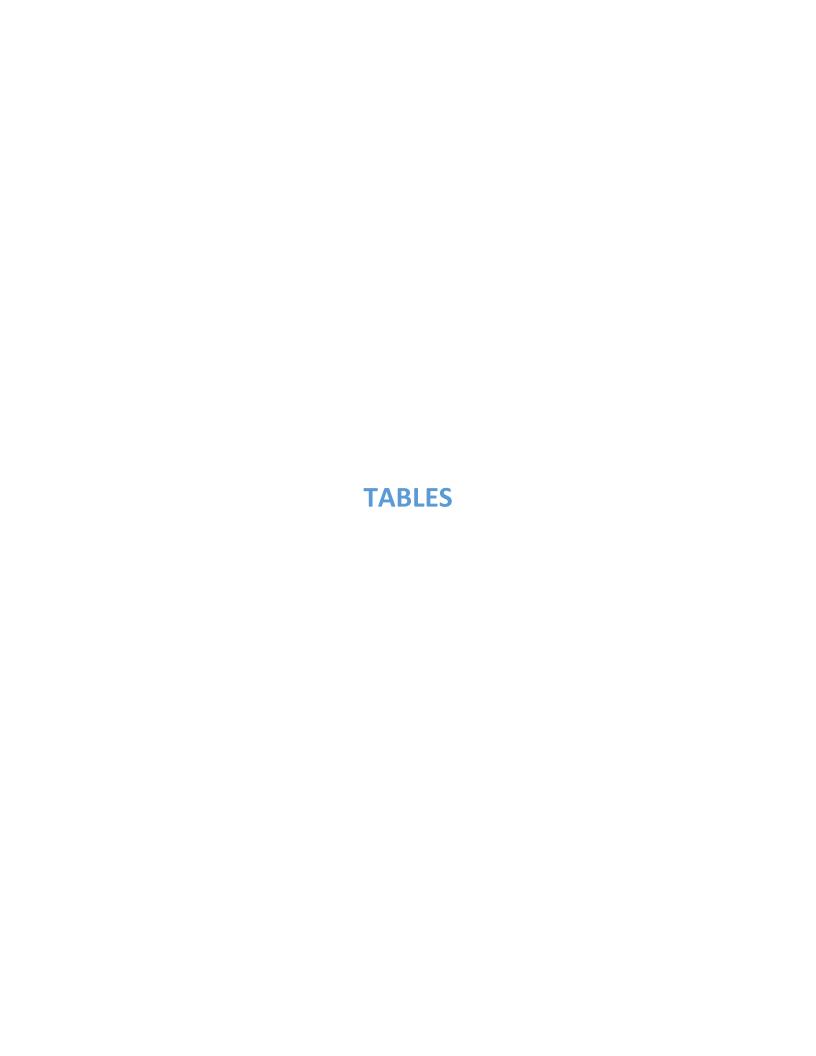


TABLE 1
GROUNDWATER MONITORING WELL DETAILS
GENERAL WASTE AND RECYCLING CCR LANDFILL

	MW	/-3R	MV	N-7	MV	V-8	MV	V-9	MW-10	
MDH Unique Well #	797	239	817	979	817	978	817	980	847087	
Northing (UTM NAD83)	52483	332.87	52484	49.356	52482	5248271.719		74.904	5248293.27	
Easting (Zone 15 Meters)	4942	67.27	49402	24.588	494451.676		494695.922		494689.54	
Installation Date	7/9	/15	9/30/	/2016	9/29/	/2016	9/30/	/2016	May	/-20
Ground Elev. (ft)	153	0.10	1493.62		149	1.63	145	2.93	144	9.8
Riser Top Elev. (ft)	153.	1532.29		6.13	149	4.41	145	4.72	145	2.6
Total Depth (ft)	75	5.0	26	5.6	41	1.3	18	3.9	18	3.2
Screened Interval (ft)	65	- 75	16.6	- 26.6	31.3	- 41.3	8.9 -	18.9	8.2-	18.2
Screened Elevation	1465.10	- 1455.10	1477.02	- 1467.02	1460.33	- 1450.33	1444.03 -	- 1434.03	1444-40	1454.40
Date of Measurement	Static Level	GW Elev.	Static Level	GW Elev.	Static Level	GW Elev.	Static Level	GW Elev.	Static Level	GW Elev.
25-Oct-16	61.90	1470.39	17.92	1478.21	30.42	1463.99	11.07	1443.65		
15-Nov-16	61.75	1470.54	18.11	1478.02	30.31	1464.10	11.16	1443.56		
5-Dec-16	61.90	1470.39	16.22	1479.91	33.40	1461.01	10.69	1444.03		
17-Apr-17	61.95	1470.34	17.93	1478.20	30.18	1464.23	10.98	1443.74		
8-May-17	61.82	1470.47	16.16	1479.97	29.72	1464.69	10.62	1444.10		
20-Jun-17	61.56	1470.73	17.97	1478.16	29.60	1464.81	11.11	1443.61		
11-Jul-17	61.57	1470.72	18.32	1477.81	29.84	1464.57	11.40	1443.32		
1-Aug-17	61.74	1470.55	18.95	1477.18	30.21	1464.20	11.50	1443.22		
16-Aug-17	61.90	1470.39	19.34	1476.79	30.53	1463.88	11.53	1443.19		
18-Sep-17	61.89	1470.40	18.85	1477.28	30.74	1463.67	10.84	1443.88		
16-Oct-17	61.47	1470.82	16.97	1479.16	30.18	1464.23	11.00	1443.72		
23-Apr-18	64.84	1467.45	20.64	1475.49	33.81	1460.60	10.71	1444.01		I
11-Oct-18	65.65	1466.64	21.65	1474.48	34.57	1459.84	10.97	1443.75		I
25-Apr-19	65.79	1466.50	18.76	1477.37	34.23	1460.18	10.99	1443.73		
21-Oct-19			21.65	1474.48	34.57	1459.84	10.97	1443.75		
6-May-20			20.65	1475.48	32.76	1461.65	11.39	1443.33	9.99	1442.61
6-Oct-20			21.46	1474.67	33.72	1460.69	11.2	1443.52	9.17	1443.43
29-Apr-21			21.18	1474.95	35.37	1459.04	11.19	1443.53	7.91	1444.69
21-Oct-21			24.98	1471.15	37.24	1457.17	11.22	1443.50	10.30	1442.3
18-Apr-22			18.95	1477.18	36.03	1458.38	10.5	1444.22	6.87	1445.73
18-Oct-22			22.35	1473.78	31.99	1462.42	10.99	1443.73	10.21	1442.39
25-Apr-23			16.90	1479.23	32.91	1461.50	11.00	1443.72	6.15	1446.45
16-Oct-23			23.15	1472.98	34.16	1460.25	11.85	1442.87	10.18	1442.42

Note: MW-3R was abandoned during landfill expansion prior to the October 2019 monitoring event.

TABLE 2A Appendix III Parameters								
Parameter	MCL							
Boron	NA							
Calcium	NA							
Chloride	NA							
Fluoride	4.0 mg/L							
рН	NA							
Sulfate	NA							
Total Dissolved Solids (TDS)	NA							

TABLE 2B Appendix	x IV Parameters				
Parameter	MCL				
Antimony	0.006 mg/L				
Arsenic	0.01 mg/L				
Barium	2.0 mg/L				
Beryllium	0.004 mg/L				
Cadmium	0.10 mg/L				
Chromium	0.10 mg/L				
Cobalt	NA				
Fluoride	4.0 mg/L				
Lead	0.015 mg/L				
Lithium	NA				
Mercury	0.002 mg/L				
Molybdenum	NA				
Selenium	0.05 mg/L				
Thallium	0.002 mg/L				
Radium 226 and 228 combined	5 pCi/L				

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Chloride	mg/L	25-Oct-16	1.1	109	1	606		606	<1.0
		15-Nov-16	2.2	105	1.2	4.1		4.3	<1.0
		5-Dec-16	1.6	102	1.2	5.8		5.8	<1.0
		17-Apr-17	1.1	63.8	1.1	6.6		7.6	<1.0
		8-May-17	1.1	52.2	<1.0	14.9		13.9	<1.0
		20-Jun-17	1.1	52.5	1	8.9		9	<1.0
		11-Jul-17	1.1	55.6	1	17.6		17.5	<1.0
		1-Aug-17	1.2	61.0	1.3	20.8		20.3	<1.0
		16-Aug-17	1.2	67.5	1.2	19		19.8	<1.0
		18-Sep-17	1.2	82.4	1	10.4		10.7	<1.0
		16-Oct-17	1.1	52.0	1.2	8.7		8.8	<1.0
		4/23/2018	1.5	124	<1.2	2.8		0.0	11.0
		10/11/2018	2	91.4	1.4	8.4		8.4	<1.0
			2.8	61.4	1.3	2.9		2.8	<1.0
		4/25/2019	2.6						
		10/21/2019		37.4	1.4	6		5.9	<1.0
		6-May-20		15.8	<1.0	2.1	1.4	2.1	<1.0
		29-May-20			-1.0	1.5			
		5-Oct-20		19.4	<1.0	1.5	1.6	1.6	<1.0
		29-Apr-21		11.5	1.5	4	1.5	3.9	<1.0
		25-Oct-21		(dry)	2	6.4	1.3	7.1	<1.0
		18-Apr-22		3	1.3	8.1	1.2	1.2	<1.2
		18-Oct-22		2.9	1.4	5	<1	5.2	<1
		25-Apr-23		1.5	1.1	7.9	1.2	1.2	<1.0
		16-Oct-23		1.9	1.4	8	1.1	7.9	<1.0
Fluoride	mg/L	25-Oct-16	<0.10	< 0.10	<0.10	< 0.10		<0.10	<0.10
		15-Nov-16	<0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		5-Dec-16	<0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		17-Apr-17	0.11	0.11	<0.10	< 0.10		<0.10	<0.10
		8-May-17	<0.10	<0.10	<0.10	< 0.10		<0.10	<0.10
		20-Jun-17	<0.10	< 0.10	<0.10	< 0.10		<0.10	<0.10
		11-Jul-17	<0.10	< 0.10	<0.10	< 0.10		<0.10	<0.10
		1-Aug-17	<0.10	< 0.10	<0.10	< 0.10		<0.10	<0.10
		16-Aug-17	<0.10	< 0.10	<0.10	< 0.10		<0.10	<0.10
		18-Sep-17	0.1	<0.10	<0.10	<0.10		<0.10	<0.10
		16-Oct-17	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10
		4/23/2018	0.086	0.08	0.053	0.075			
		10/11/2018	<0.1	<0.1	<0.1	<0.1		<0.10	<0.10
		4/25/2019	<0.1	<0.1	<0.1	<0.1		<0.10	<0.10
		10/21/2019		<0.1	<0.1	<0.1		<0.10	<0.10
		6-May-20			<0.1	<0.1		<0.10	<0.10
		5-Oct-20			<0.1	<0.1	0.14	0.14	<0.10
		29-Apr-21		< 0.05	< 0.05	0.079	0.12	0.076	<0.05
		25-Oct-21		(dry)	0.06	0.084	0.17	0.084	< 0.05
		18-Apr-22		0.067	0.058	0.086	0.14	0.14	<0.05
		18-Oct-22		< 0.05	<0.05	0.092	0.14	0.061	<0.05
		25-Apr-23		0.079	0.075	0.09	0.13	0.13	<0.05
		16-Oct-23		0.072	0.06	0.084	0.16	0.083	<.05
Sulfate	mg/L	25-Oct-16	1980	937	823	462		458	<2.0
		15-Nov-16	1820	929	764	475		470	<2.0
		5-Dec-16	1840	903	778	460		460	<2.0

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Sulfate	mg/L	17-Apr-17	1710	551	780	454		441	<2.0
		8-May-17	1760	712	731	438		433	<2.0
		11-Jul-17	1870	548	707	406		412	<2.0
		1-Aug-17	1830	511	700	339		342	<2.0
		16-Aug-17	1840	447	703	354		348	<2.0
		18-Sep-17	1890	441	719	432		436	<2.0
		16-Oct-17	1840	675	1010	443		432	<2.0
		10/11/2018	1550	695	589	460		461	<2.0
		4/25/2019	1300	988	562	423		441	<2.0
		10/21/2019		1120	630	437		434	<2.0
		6-May-20			547	425		346	<2.0
		29-May-20		1420			360	1420	<2.0
		5-Oct-20		1140	594	467	180	180	<2.0
		29-Apr-21		1500	673	487	238	396	<1.0
		25-Oct-21		(dry)	692	431	389	435	<1.0
		18-Apr-22		1560	864	372	208	209	<1
		18-Oct-22		1390	794	450	269	457	<1
		25-Apr-23		1480	790	448	548	546	<5
		16-Oct-23		1370	825	431	427	443	<1.0
Total Dissolved Solids	mg/L	25-Oct-16	3300	2070	1740	1070		1090	<10.0
		15-Nov-16	3130	2090	1710	1190		1140	<10.0
		5-Dec-16	3110	1940	1710	1100		1110	<10.0
		17-Apr-17	3160	1500	1760	1180		1120	<10.0
		8-May-17	3010	1610	1630	1050		1040	<10.0
		20-Jun-17	3190	1700	1510	1090		1120	<10.0
		11-Jul-17	3040	1380	1550	1010		1020	<10.0
		1-Aug-17	3290	1300	1560	864		888	12
		16-Aug-17	3360	1300	1610	979		957	32
		18-Sep-17	2580	1310	1580	1100		1000	<10.0
		16-Oct-17	3110	1380	1800	993		1010	<10.0
		4/23/2018	2870	1420	1400	1080			
		10/11/2018	2850	1600	1350	1100		1120	<10.0
		4/25/2019	2560	1970	1380	1020		1050	<10.0
		10/21/2019		2250	1490	1100		1090	<10.0
		6-May-20		2590	1460	1100			
		29-May-20					806		
		5-Oct-20		2370	1500	1200	556		
		29-Apr-21		2810	1590	1180	587	1170	<10.0
		25-Oct-21		(dry)	1370	1060	754	1070	<10.0
		18-Apr-22		2700	1530	1020	480	362	<10
		18-Oct-22		2300	933	1140	716	1170	<10
		25-Apr-23		2380	1700	1120	1100	1120	<10
		16-Oct-23		2470	1790	1190	920	1190	<10
pH, Lab	SU	15-Nov-16	7.3	7.2	7.2	7.2		7.2	6.0
		5-Dec-16	6.8	6.6	6.6	6.9		6.8	7.1
		17-Apr-17	7.3	7.4	7.3	7.3		7.3	6.1
		8-May-17	7.2	7.1	7.1	7.2		7.2	6.2
		20-Jun-17	7.1	7.1	7.2	7.2		7.2	5.9
		11-Jul-17	7.1	7.1	7.1	7.2		7.2	6.0
		1-Aug-17	7.1	7.1	7.2	7.2		7.2	6.0
								1	-

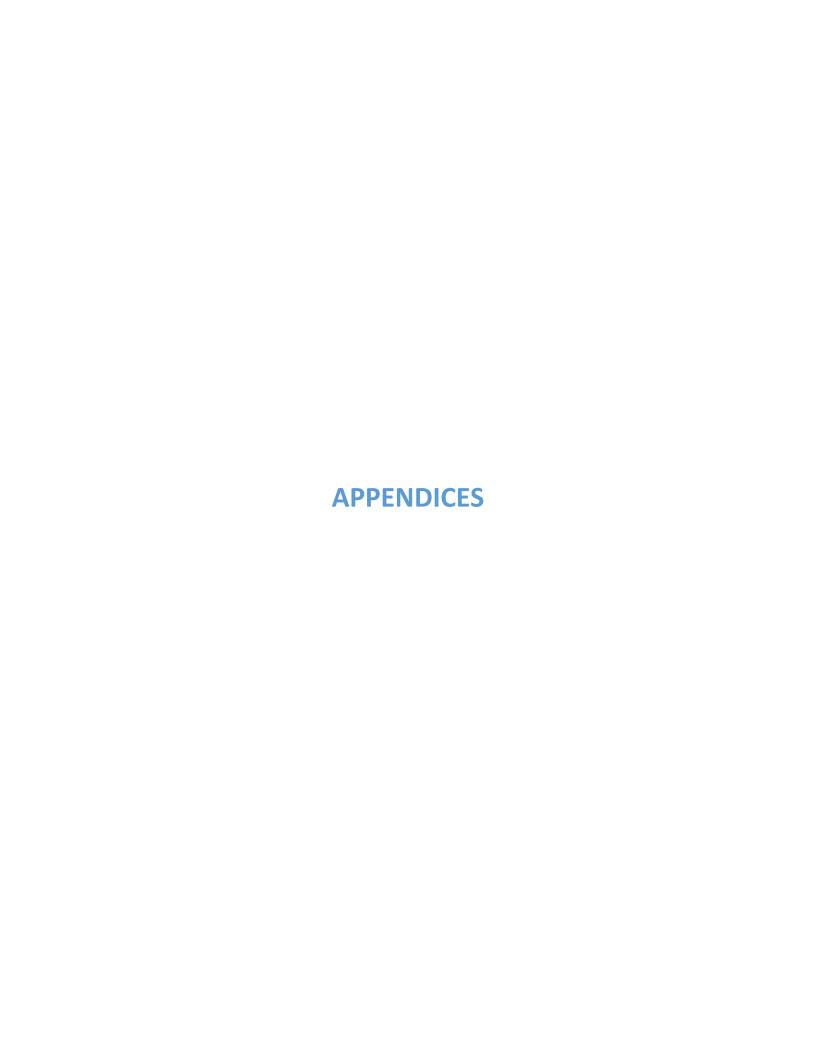
pH, Lab SU 16-Aug-17 7.1 18-Sep-17 7.2 7.1 7.2 7.2 7.2 7.2 7.2 7	Field Blank
18-8cp-17	5.8
	5.8
### ### ### ### ### ### ### ### ### ##	6.0
	0.0
	6.1
	6.2
PH, Field SU 25-Oct-16 6.48 6.34 6.38 6.54	
29-May-20	5.7
PH, Field	
15-Nov-16	
S-Dec-16 6.53 6.35 6.35 6.59	
17-Apr-17	
Shay-17 6.76 6.67 6.73 6.97	
Part	
11-Jul-17	
1-Aug-17	
16-Aug-17	
18-Sep-17 6.47 6.31 6.37 6.59	
16-Oct-17 6.74 6.48 6.48 6.71	
A/23/2018 6.45 6.34 6.40 6.60	
10/11/2018 6.27 6.29 6.34 6.52	
10/21/2019 6.25 6.28 6.53	
6-May-20 6.36 6.53 6.91 29-May-20 6.21 6.29 6.50 6.66 29-Apr-21 6.10 6.27 6.49 6.85 25-Oct-21 (dry) 6.46 6.55 7.08 18-Apr-22 7.20 7.30 7.20 7.70 7.6 18-Oct-22 7.30 7.10 7.40 7.50 7.3 25-Apr-23 6.30 6.24 6.56 6.81 16-Oct-23 6.20 6.38 6.56 6.97 Specific Conductance, Field 15-Nov-16 3359 2534 2088 1586 5-Dec-16 3314 2330 2106 1530 17-Apr-17 3351 1874 2090 1541 8-May-17 3366 2090 2063 1494	
29-May-20	
Specific Conductance, Field S-Oct-20 S	
29-Apr-21 6.10 6.27 6.49 6.85	
25-Oct-21	
18-Apr-22	
18-Oct-22 7.30 7.10 7.40 7.50 7.3	
25-Apr-23 6.30 6.24 6.56 6.81	5.9
16-Oct-23 6.20 6.38 6.56 6.97 Specific Conductance, Field 15-Nov-16 3359 2570 2146 1460 15-Nov-16 3359 2534 2088 1586 5-Dec-16 3314 2330 2106 1530 17-Apr-17 3351 1874 2090 1541 8-May-17 3366 2090 2063 1494	6.1
Specific Conductance, Field 15-Nov-16 3359 2570 2146 1460	
15-Nov-16 3359 2534 2088 1586	
5-Dec-16 3314 2330 2106 1530 17-Apr-17 3351 1874 2090 1541 8-May-17 3366 2090 2063 1494	
17-Apr-17 3351 1874 2090 1541 8-May-17 3366 2090 2063 1494	
8-May-17 3366 2090 2063 1494	
20-Jun-17 3359 1995 1898 1514	-
11-Jul-17 3464 1802 1974 1436	
1-Aug-17 3433 1773 1961 1321	
16-Aug-17 3430 1806 1959 1333	
18-Sep-17 3475 1815 1978 1477	
16-Oct-17 3422 2015 2360 1469	
4/23/2018 3131 2008 1894 1562	
10/11/2018 3128 1428 1793 1526	
4/25/2019 2983 2501 1821 1522	
10/21/2019 2634 1917 1531	
6-May-20 1065 1821 1486	
5-Oct-20 2565 1869 1575 818	

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Specific	μmhos/cm	29-Apr-21		3004	1964	1601	790		
Conductance, Field		25-Oct-21		(dry)	1749	1288	882		
		18-Apr-22		2992	2179	1377	662		
		18-Oct-22		2641	2106	1517	1000		
		25-Apr-23		2739	2031	1565	1419		
		16-Oct-23		2719	1108	844	788		

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Antimony	μg/L	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
Dissolved (ONE EVEN	ΓONLY) ->	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
		8-May-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
		20-Jun-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
		11-Jul-17	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
		1-Aug-17	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
		16-Aug-17	<1.0	<1.0	<1.0	<1.0		<1.0	< 0.50
		18-Sep-17	<1.0	<1.0	<1.0	<1.0		<1.0	< 0.50
		16-Oct-17	12	<1.0	<1.0	<1.0		<1.0	< 0.50
		29-May-20					<1.0		
Arsenic	μg/L	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
Dissolved (ONE EVEN	ΓONLY) ->	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
		8-May-17	<2.0	<2.0	2.7	<2.0		<2.0	< 0.50
		20-Jun-17	<2.0	38.7	<2.0	<2.0		<2.0	<0.50
		11-Jul-17	< 0.50	3.2	<0.50	< 0.50		<0.50	< 0.50
		1-Aug-17	< 0.50	3.2	0.99	< 0.50		<0.50	<0.50
		16-Aug-17	<1.0	2.7	2.7	<1.0		<1.0	< 0.50
		18-Sep-17	<1.0	<1.0	<1.0	<1.0		<1.0	< 0.50
		16-Oct-17	<1.0	<1.0	<1.0	<1.0		<1.0	< 0.50
		29-May-20					<1.0		
Barium	μg/L	17-Apr-17	<40.0	187	<40.0	61.5		59.9	<10.0
Dissolved (ONE EVEN	ΓONLY) ->	17-Apr-17	<40.0	51.5	<40.0	62.8		65.6	<10.0
		8-May-17	42.4	48.6	62.5	64.5		63.8	<10.0
		20-Jun-17	18.5	1740	40.9	61.3		59.3	<10.0
		11-Jul-17	18.7	172	38.8	58.5		57.2	<10.0
		1-Aug-17	<40.0	165	59.4	59.0		64.5	<10.0
		16-Aug-17	17.0	129	86.2	54.0		53.1	<10.0
		18-Sep-17	18.9	61.1	24.7	54.2		55.3	<0.50
		16-Oct-17	41.4	40.1	34.0	60.5		60.6	<0.50
		29-May-20					50.7		
Beryllium	μg/L	17-Apr-17	<0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
Dissolved (ONE EVEN	ΓONLY) ->	17-Apr-17	< 0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
		8-May-17	< 0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
		20-Jun-17	< 0.80	6.9	0.28J	< 0.80		< 0.80	<0.20
		11-Jul-17	0.48J	0.72	0.23	0.125		0.098J	< 0.20
		1-Aug-17	<0.20	0.43	0.15J	< 0.20		<0.20	< 0.20
		16-Aug-17	<0.40	0.40J	0.34J	< 0.40		< 0.40	< 0.20
		18-Sep-17	<0.40	0.18J	< 0.40	< 0.40		< 0.40	<0.20
		16-Oct-17	< 0.40	< 0.40	0.12J	<0.40		<0.40	< 0.20
		29-May-20	-				< 0.30		

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Boron	μg/L	17-Apr-17	<160	<160	<160	<160		<160	<40.0
Dissolved (ONE EVENT	ΓONLY) ->	17-Apr-17	<160	<160	<160	<160		<160	<40.0
		8-May-17	<160	<160	<160	<160		<160	<40.0
		20-Jun-17	<160	<160	<160	<160		<160	<40.0
		11-Jul-17	124	76.4	70.7	<40.0		<40.0	<40.0
		1-Aug-17	123	75.9	69.5	<40.0		<40.0	<40.0
		16-Aug-17	114	<80.0	<80.0	<80.0		<80.0	<40.0
		18-Sep-17	122	<80.0	<80.0	<80.0		<80.0	<40.0
		16-Oct-17	126	87.8	<80.0	<80.0		<80.0	<40.0
		4/23/2018	123	73.8	79.5	43.3			
		10/11/2018	103	70.8	64.7	<40		<40.0	<40.0
		4/25/2019	96	69.7	75.8	<50		<50.0	<10.0
		10/21/2019		66.9	70.5	<40		<40.0	<40.0
		6-May-20			71.9	<40		<40	<40
		29-May-20		64.7			<40	<40	<40
		5-Oct-20		71.7	70.3	42.9	<40	<40	<40
		29-Apr-21		67.3	78.2	41	15.8	41.6	<10
		25-Oct-21		(dry)	57.1	35.5	18.5	35.4	<10
		18-Apr-22		55.6	64.2	32.7	11.8	11.8	<10
		18-Oct-22		70.9	71.5	38.8	37.8	37.5	<10
		25-Apr-23		66.7	92.6	36.2	20	19.8	<10
		16-Oct-23		84.9	76.8	<50.0	<50.0	<50.0	<10.0
Cadmium	μg/L	17-Apr-17	< 0.80	<0.80	< 0.80	< 0.80		< 0.80	< 0.20
Dissolved (ONE EVEN	NT ONLY)	17-Apr-17	< 0.80	<0.80	< 0.80	< 0.80		< 0.80	< 0.20
		8-May-17	< 0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
		20-Jun-17	< 0.80	1.3	< 0.80	< 0.80		< 0.80	< 0.20
		11-Jul-17	< 0.20	0.15J	< 0.20	< 0.20		< 0.20	< 0.20
		1-Aug-17	< 0.20	0.13J	< 0.20	< 0.20		< 0.20	< 0.20
		16-Oct-17	2.0	< 0.40	< 0.40	< 0.40		< 0.40	< 0.20
		29-May-20					<0.2		
Calcium	mg/L	17-Apr-17	563	350	384	197		192	< 0.50
Dissolved (ONE EVEN	NT ONLY)	17-Apr-17	617	347	412	208		216	< 0.50
		8-May-17	588	404	402	203		209	<1.0
		20-Jun-17	607	524	373	211		207	< 0.50
		11-Jul-17	628	355	387	199		199	< 0.50
		1-Aug-17	650	375	415	189		185	< 0.50
		16-Aug-17	609	341	388	179		178	< 0.50
		18-Sep-17	538	316	369	192		191	<100
		16-Oct-17	585	357	448	197		197	<100
		4/23/2018	551	371	371	229			
		10/11/2018	532	400	331	193		192	< 0.10
		4/25/2019	484	481	343	206		203	< 0.50
		10/21/2019		539	354	217		219	< 0.50

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Calcium	mg/L	6-May-20			342	206		203	< 0.50
		29-May-20		583			168	616	< 0.50
		5-Oct-20		521	360	225	124	126	< 0.50
		29-Apr-21		664	402	221	123	224	< 0.50
		25-Oct-21		(dry)	372	206	149	195	< 0.50
		18-Apr-22		608	403	194	97.9	93.6	< 0.50
		18-Oct-22		547	405	212	158	212	< 0.50
		25-Apr-23		539	403	199	215	219	< 0.50
		16-Oct-23		498	387	213	189	219	< 0.50
Chromium	μg/L	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
Dissolved (ONE EVEN	T ONLY)	8-May-17	17.6	<4.0	10.7	<4.0		<4.0	<1.0
		20-Jun-17	<4.0	309	4.2	<4.0		<4.0	<1.0
		1-Aug-17	<1.0	20.2	7.7	<1.0		1.3	<1.0
		16-Aug-17	<2.0	18.0	17.7	<2.0		<2.0	<1.0
		18-Sep-17	<2.0	5.5	2.1	<2.0		<2.0	<1.0
		16-Oct-17	17.0	<2.0	4.2	<2.0		<2.0	<1.0
		29-May-20					<1.5		
Cobalt	μg/L	17-Apr-17	7.3	10.2	5.8	< 0.80		< 0.80	< 0.20
Dissolved (ONE EVEN	T ONLY)	17-Apr-17	4.6	< 0.80	4.7	<0.80		<0.80	< 0.20
		8-May-17	9.1	2.5	8.2	<0.80		<0.80	< 0.20
		20-Jun-17	5.3	97.9	6.3	< 0.80		< 0.80	< 0.20
		11-Jul-17	4.9	9.4	6.2	< 0.20		< 0.20	< 0.20
		1-Aug-17	3.7	7.3	6.1	<0.20		0.28	< 0.20
		16-Aug-17	4.8	6.2	8.4	<0.40		< 0.40	< 0.20
		18-Sep-17	4.4	2.5	5.3	<0.40		< 0.40	< 0.20
		16-Oct-17	13.0	0.86	6.6	<0.40		< 0.40	< 0.20
		29-May-20					0.8		
Lead	μg/L	17-Apr-17	<2.0	5.6	<2.0	<2.0		<2.0	< 0.50
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
		8-May-17	<2.0	<2.0	2.5	<2.0		<2.0	< 0.50
		20-Jun-17	<2.0	77.0	<2.0	<2.0		<2.0	< 0.50
		11-Jul-17	<0.50	5.3	1.1	<0.50		< 0.50	<0.50
		1-Aug-17	<0.50	4.6	1.9	<0.50		0.60	< 0.50
		16-Aug-17	<1.0	3.8	3.3	<1.0		<1.0	< 0.50
		18-Sep-17	<1.0	1.4	<1.0	<1.0		<1.0	< 0.50
		16-Oct-17	2.2	<1.0	<1.0	<1.0		<1.0	<0.50
		29-May-20					< 0.50		
Lithium	μg/L	17-Apr-17	<20.0	26.5	32.7	<20.0		<20.0	<5.0
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	<20.0	<20.0	27.9	<20.0		<20.0	<5.0
		8-May-17	<20.0	<20.0	30.3	<20.0		<20.0	<5.0


PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Lithium	μg/L	20-Jun-17	<20.0	150	26.8	<20.0		<20.0	<5.0
		11-Jul-17	12.5	25.2	27.7	11.6		11.0	<5.0
		1-Aug-17	12.6	22.9	29.6	10.9		12.2	<5.0
		16-Aug-17	<20.0	18.3	29.7	10.7		10.5	<5.0
		18-Sep-17	14.5	19.9	29.7	14.3		14.5	<5.0
		16-Oct-17	17.0	19.5	28.1	15.7		16.4	<5.0
		29-May-20					<10.0		
Mercury	μg/L	17-Apr-17	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20
		8-May-17	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20
		20-Jun-17	< 0.20	0.46	<0.20	< 0.20		< 0.20	< 0.20
		11-Jul-17	< 0.20	<0.20	< 0.20	< 0.20		<0.20	< 0.20
		1-Aug-17	< 0.20	<0.20	< 0.20	< 0.20		<0.20	< 0.20
		16-Aug-17	< 0.20	<0.20	< 0.20	< 0.20		<0.20	< 0.20
		18-Sep-17	< 0.20	<0.20	< 0.20	< 0.20		<0.20	< 0.20
		16-Oct-17	< 0.20	<0.20	< 0.20	< 0.20		<0.20	< 0.20
		29-May-20					< 0.10		
Molybdenum	μg/L	17-Apr-17	2.3	<1.2	<1.2	<1.2		<1.2	< 0.30
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	<1.2	<1.2	<1.2	<1.2		<1.2	< 0.30
		8-May-17	2.9	<1.2	<1.2	<1.2		<1.2	< 0.30
		20-Jun-17	<1.2	2.8	<1.2	<1.2		<1.2	< 0.30
		11-Jul-17	0.43	0.55	< 0.30	< 0.30		< 0.30	< 0.30
		1-Aug-17	< 0.30	0.39	0.33	< 0.30		< 0.30	< 0.30
		16-Aug-17	< 0.60	< 0.60	< 0.60	< 0.60		< 0.60	< 0.30
		18-Sep-17	< 0.60	< 0.60	< 0.60	< 0.60		< 0.60	< 0.30
		16-Oct-17	3.1	< 0.60	< 0.60	< 0.60		< 0.60	< 0.30
		29-May-20					0.98		
Selenium	μg/L	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		8-May-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		20-Jun-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		11-Jul-17	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
		1-Aug-17	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
		16-Aug-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		18-Sep-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		16-Oct-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		29-May-20					<1.0		
Thallium	μg/L	17-Apr-17	< 0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
Dissolved (ONE EVENT	ONLY) ->	17-Apr-17	< 0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Thallium	μg/L	8-May-17	<0.80	< 0.80	< 0.80	< 0.80		< 0.80	< 0.20
		20-Jun-17	< 0.80	2.3	0.48j	< 0.80		< 0.80	< 0.20
		11-Jul-17	< 0.20	0.19J	0.04J	< 0.20		< 0.20	< 0.20
		1-Aug-17	< 0.20	0.15J	0.053J	0.0035J		0.012J	< 0.20
		16-Aug-17	< 0.40	0.14J	0.12J	< 0.40		< 0.40	< 0.20
		18-Sep-17	< 0.40	0.069J	0.069J	< 0.40		< 0.40	< 0.20
		16-Oct-17	0.10J	0.052J	0.038J	< 0.40		< 0.40	< 0.20
		29-May-20					< 0.02		

TABLE 3C CCR COMBINED RADIUM 226 AND 228 SUMMARY GENERAL WASTE AND RECYCLING, INC.

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Combined Radium 226/228	pCi/L	17-Apr-17	1.32 ± 0.53	<0.57	0.60 ± 0.56	<0.55		0.91 ± 0.64	1.06 ± 0.52
Combined Radium 226/228	pCi/L	8-May-17	1.08 ± 0.70	1.78 ± 0.80	4.25 ± 1.07	<0.88		1.51 ± 0.66	<0.59
Combined Radium 226/228	pCi/L	20-Jun-17	2.06 ± 0.84	0.90 ± 0.93	1.22 ± 0.84	0.73 ± 0.79		<0.68	<1.0
Combined Radium 226/228	pCi/L	11-Jul-17	< 0.78	1.57 ± 1.34	1.26 ± 1.23	<0.75		2.16 ± 1.23	< 0.69
Combined Radium 226/228	pCi/L	1-Aug-17	1.24 ± 0.54	1.24 ± 0.68	0.85 ± 0.56	0.91 ± 0.65		1.54 ± 0.57	0.76 ± 0.48
Combined Radium 226/228	pCi/L	16-Aug-17	0.68 ± 0.515	0.90 ± 0.48	0.92 ± 0.59	1.15 ± 0.51		1.59 ± 0.73	<0.62
Combined Radium 226/228	pCi/L	18-Sep-17	0.789 ± 1.33	2.89 ± 1.73	2.43 ± 1.83	2.17 ± 1.63		1.66 ± 1.49	0.805 ± 1.27
Combined Radium 226/228	pCi/L	16-Oct-17	1.62 ± 1.23	3.40 ± 1.68	3.11 ± 1.42	1.95 ± 1.15		2.18 ± 1.33	1.10 ± 1.06

	Table 4: 2024	Updated UPLs Based	on Unified Guidance	
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	104.3	106.17	43.456	41.8
Calcium (mg/L)	663.1	433.0	231.3	252.5
Chloride (mg/L)	131.4	1.8	18.9	1.9
Fluoride (mg/L)	0.104	0.079	0.098	0.184
pH (SU)	6.03 - 6.74	6.09 - 6.79	6.27 - 7.01	6.48 - 7.35
Sulfate (mg/L)	1729.9	891.16	515.6	655.7
Total Dissolved Solids (mg/L)	2963	1882	1252	1273

APPENDIX A ANALYTICAL LABORATORY REPORTS & FIELD REPORTS

May 08, 2023

Scott Seeley Northeast Technical Services 526 Chestnut Street Virginia, MN 55792

RE: Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Dear Scott Seeley:

Enclosed are the analytical results for sample(s) received by the laboratory on April 25, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Duluth, MN
- Pace Analytical Services Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mikki Station

Nikki Staton nikki.staton@pacelabs.com (218) 336-2110 Project Manager

Enclosures

cc: Allison Byrd, Northeast Technical Services Sample Data, Northeast Technical Services Carrie Jensen, Northeast Technical Services Alan Phillips, Dem-Con Companies Karissa Vosen, Northeast Technical Services

CERTIFICATIONS

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137
Florida Certification #: E87605
Georgia Certification #: 959
GMP+ Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167

Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: AI-03086
Louisiana DW Certification #: MN00064
Maine Certification #: MN00064

Maryland Certification #: 322
Michigan Certification #: 9909
Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064
Missouri Certification #: 10100
Montana Certification #: CERT0092

Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244
Ohio VAP Certification (1700) #: CL101
Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163
Washington Certification #: C486
West Virginia DEP Certification #: 382
West Virginia DW Certification #: 9952 C

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

Wisconsin Certification #: 999407970

Pace Analytical Services, LLC - Duluth MN

4730 Oneota Street, Duluth, MN 55807 Minnesota Certification #: 027-137-152

Minnesota Dept of Ag Approval: via Minnesota 027-137-

152

Minnesota Petrofund Registration #: 1240 Montana Certification #: CERT0102 Nevada Certification #: MN00037 North Dakota Certification #: R-105 Wisconsin Certification #: 999446800 Wisconsin Dept of Ag Certification: 480341

SAMPLE SUMMARY

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10650724001	MW7	Water	04/25/23 10:30	04/25/23 16:25
10650724002	MW8	Water	04/25/23 11:35	04/25/23 16:25
10650724003	MW9	Water	04/25/23 13:02	04/25/23 16:25
10650724004	MW10	Water	04/25/23 14:06	04/25/23 16:25
10650724005	Field Duplicate	Water	04/25/23 14:07	04/25/23 16:25
10650724006	Field Blank	Water	04/25/23 14:10	04/25/23 16:25

SAMPLE ANALYTE COUNT

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10650724001	MW7	SM 2540C-2015	CD3	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M
10650724002	MW8	SM 2540C-2015	CD3	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M
0650724003	MW9	SM 2540C-2015	CD3	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M
0650724004	MW10	SM 2540C-2015	CD3	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M
0650724005	Field Duplicate	SM 2540C-2015	CD3	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M
0650724006	Field Blank	SM 2540C-2015	RL1	1	PASI-DU
		EPA 300.0	RL1	3	PASI-DU
		SM 4500-H+B-2011	JH3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	TJ1	1	PASI-M

PASI-DU = Pace Analytical Services - Duluth, MN PASI-M = Pace Analytical Services - Minneapolis

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Date: 05/08/2023 05:40 PM

Sample: MW7	Lab ID: 106	50724001	Collected:	04/25/2	3 10:30	Received: 0	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2540C TDS DU	Analytical Met Pace Analytica								
Total Dissolved Solids	2380	mg/L		250	1		04/28/23 12:48	3	
300.0 IC Anions WW 28 Day DU	Analytical Met Pace Analytica								
Chloride Fluoride Sulfate	1.5 0.079 1480	mg/L mg/L mg/L		1.0 0.050 10.0	1 1 10		04/28/23 15:00 04/28/23 15:00 04/28/23 15:23	16984-48-8	
4500H+B pH, WW DU	Analytical Met Pace Analytica								
pH at 25 Degrees C	7.1	Std. Units		0.10	1		04/27/23 00:04	1	H6
200.7 MET ICP	Analytical Met Pace Analytica		•		hod: EP	A 200.7			
Calcium	539	mg/L		0.50	1	04/28/23 07:55	05/01/23 10:5	7 7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica				hod: EP	A 200.8			
Boron	66.7	ug/L		10.0	1	04/28/23 07:59	04/28/23 17:53	3 7440-42-8	
Sample: MW8	Lab ID: 106	50724002	Collected:	04/25/2	3 11:35	Received: 0	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2540C TDS DU	Analytical Met Pace Analytica								
Total Dissolved Solids	1700	mg/L		40.0	1		04/28/23 12:48	3	
300.0 IC Anions WW 28 Day DU	Analytical Met Pace Analytica								
Chloride Fluoride Sulfate	1.1 0.075 790	mg/L mg/L mg/L		1.0 0.050 5.0	1 1 5		04/28/23 13:20 04/28/23 13:20 04/28/23 13:50	6 16984-48-8	
4500H+B pH, WW DU	Analytical Met Pace Analytica								
μ., υ	•				4		04/27/23 00:12)	H6
• ,	7.1	Std. Units		0.10	1		0 1/21/20 00.11	_	110
pH at 25 Degrees C 200.7 MET ICP	-	hod: EPA 20	0.7 Prepara	tion Met		A 200.7	0 1/21/20 00:11	-	110

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Date: 05/08/2023 05:40 PM

Pace Project No.: 10650724									
Sample: MW8	Lab ID: 106	550724002	Collected:	04/25/2	23 11:35	Received: 0	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical Met				hod: EP	A 200.8			
Boron	92.6	ug/L		10.0	1	04/28/23 07:59	04/28/23 17:57	7 7440-42-8	
Sample: MW9	Lab ID: 106	550724003	Collected:	04/25/2	23 13:02	Received: 0	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	Analytical Met Pace Analytic								
Total Dissolved Solids	1120	mg/L		40.0	1		04/28/23 12:48	3	
300.0 IC Anions WW 28 Day DU	Analytical Met Pace Analytic								
Chloride	7.9	mg/L		1.0	1		04/28/23 16:57	7 16887-00-6	
Fluoride	0.090	mg/L		0.050	1		04/28/23 16:57		
Sulfate	448	mg/L		2.0	2		04/28/23 17:2	1 14808-79-8	
4500H+B pH, WW DU	Analytical Met Pace Analytic								
pH at 25 Degrees C	7.2	Std. Units	5	0.10	1		04/27/23 00:20)	H6
200.7 MET ICP	Analytical Met Pace Analytic				hod: EP	A 200.7			
Calcium	199	mg/L		0.50	1	04/28/23 07:55	05/01/23 11:00	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytic				hod: EP	A 200.8			
Boron	36.2	ug/L		10.0	1	04/28/23 07:59	0 04/28/23 18:00	7440-42-8	
Sample: MW10	Lab ID: 106	550724004	Collected:	04/25/2	23 14:06	Received: 0	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2540C TDS DU	Analytical Met Pace Analytic								
Total Dissolved Solids	1100	mg/L		20.0	1		04/28/23 12:48	3	
300.0 IC Anions WW 28 Day DU	Analytical Met								
Chloride	1.2	mg/L		1.0	1		04/28/23 16:10	16887-00-6	
Fluoride	0.13	mg/L		0.050	1		04/28/23 16:10		
Sulfate	548	mg/L		5.0	5		04/28/23 16:34	14808-79-8	

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Date: 05/08/2023 05:40 PM

Sample: MW10	Lab ID:	10650724004	Collected:	04/25/2	23 14:06	Received: 0	04/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500H+B рН, WW DU	•	Method: SM 450 rtical Services -							
pH at 25 Degrees C	7.7	Std. Units		0.10	1		04/27/23 00:58	3	H6
200.7 MET ICP	•	Method: EPA 20 rtical Services -	•		hod: EP	A 200.7			
Calcium	215	mg/L		0.50	1	04/28/23 07:5	5 05/01/23 11:02	2 7440-70-2	
200.8 MET ICPMS	-	Method: EPA 20 rtical Services -			hod: EP	A 200.8			
Boron	20.0	ug/L		10.0	1	04/28/23 07:5	9 04/28/23 18:04	1 7440-42-8	
Sample: Field Duplicate	Lab ID:	10650724005	Collected:	04/25/2	23 14:07	Received: 0	04/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	,	Method: SM 254							
Total Dissolved Solids	1120	mg/L		40.0	1		04/28/23 12:48	3	
300.0 IC Anions WW 28 Day DU	•	Method: EPA 30 rtical Services -							
Chloride Fluoride Sulfate	1.2 0.13 546	mg/L		1.0 0.050 5.0	1 1 5		04/28/23 17:44 04/28/23 17:44 04/28/23 18:08	16984-48-8	
4500H+В рН, WW DU	•	Method: SM 450 rtical Services -							
pH at 25 Degrees C	7.6	Std. Units		0.10	1		04/27/23 01:07	7	H6
200.7 MET ICP	•	Method: EPA 20 /tical Services -	•		hod: EP	A 200.7			
Calcium	219	mg/L		0.50	1	04/28/23 07:5	5 05/01/23 11:09	7440-70-2	
200.8 MET ICPMS	,	Method: EPA 20 rtical Services -			hod: EP	A 200.8			
Boron	19.8	ug/L		10.0	1	04/28/23 07:5	9 04/28/23 17:24	1 7440-42-8	
Sample: Field Blank	Lab ID:	10650724006	Collected:	04/25/2	23 14:10	Received: 0	04/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	,	Method: SM 254					•		

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Date: 05/08/2023 05:40 PM

Sample: Field Blank	Lab ID: 10	0650724006	Collected: 04/25/	23 14:10	Received: 04	4/25/23 16:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions WW 28 Day DU	Analytical M	ethod: EPA 30	0.00					
	Pace Analyti	ical Services -	Duluth, MN					
Chloride	ND	mg/L	1.0	1		04/28/23 15:47	16887-00-6	
Fluoride	ND	mg/L	0.050	1		04/28/23 15:47	16984-48-8	
Sulfate	ND	mg/L	1.0	1		04/28/23 15:47	14808-79-8	
4500H+B pH, WW DU	Analytical M	ethod: SM 450	00-H+B-2011					
	Pace Analyti	ical Services -	Duluth, MN					
pH at 25 Degrees C	6.3	Std. Units	0.10	1		04/27/23 01:12	2	H6
200.7 MET ICP	Analytical M	ethod: EPA 20	0.7 Preparation Me	thod: EP	A 200.7			
	Pace Analyti	ical Services -	Minneapolis					
Calcium	ND	mg/L	0.50	1	04/28/23 07:55	05/01/23 11:11	7440-70-2	
200.8 MET ICPMS	Analytical M	ethod: EPA 20	0.8 Preparation Me	thod: EP	A 200.8			
	Pace Analyti	ical Services -	Minneapolis					
Boron	ND	ug/L	10.0	1	04/28/23 07:59	04/28/23 17:28	3 7440-42-8	

(218) 727-6380

QUALITY CONTROL DATA

6385CC General Waste Apr-23 Project:

Pace Project No.: 10650724

QC Batch: 878196 Analysis Method: SM 2540C-2015 QC Batch Method: SM 2540C-2015 Analysis Description: 2540C TDS DU

> Laboratory: Pace Analytical Services - Duluth, MN

10650724001, 10650724002, 10650724003, 10650724004, 10650724005 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids ND 10.0 04/28/23 12:48 mg/L

METHOD BLANK: 4629946 Matrix: Water

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids ND 10.0 04/28/23 12:48 mg/L

LABORATORY CONTROL SAMPLE: 4629943

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 80-120

mg/L 250 244 98

SAMPLE DUPLICATE: 4629944

10650724003 Dup Max Parameter Units Result RPD RPD Qualifiers Result 1120 1100 **Total Dissolved Solids** mg/L 2 5

SAMPLE DUPLICATE: 4629945

Date: 05/08/2023 05:40 PM

10650626005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 382 **Total Dissolved Solids** mg/L 373 2 5

6385CC General Waste Apr-23 Project:

Pace Project No.: 10650724

QC Batch: 878721

QC Batch Method: SM 2540C-2015 Analysis Method: SM 2540C-2015

Analysis Description:

2540C TDS DU

Laboratory:

Pace Analytical Services - Duluth, MN

Associated Lab Samples: 10650724006

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

10650724006

Blank Reporting

Parameter Units

Result

Limit Analyzed

Total Dissolved Solids ND 10.0 05/02/23 10:54 mg/L

METHOD BLANK: 4632032

Matrix: Water

Associated Lab Samples:

10650724006

Blank Units Result Reporting Limit

Analyzed

Qualifiers

Qualifiers

Total Dissolved Solids mg/L ND 10.0 05/02/23 10:56

LABORATORY CONTROL SAMPLE:

Parameter

4632029

Spike Conc.

LCS

LCS

% Rec

Limits Qualifiers

Result % Rec Parameter Units **Total Dissolved Solids** mg/L 250 236 94 80-120

SAMPLE DUPLICATE:

Total Dissolved Solids

SAMPLE DUPLICATE:

Total Dissolved Solids

Date: 05/08/2023 05:40 PM

4632030

10650739006 Result

Dup Result **RPD**

Max RPD

Qualifiers

Parameter

Parameter

4632031

10650739004 Units Result

mg/L

Units

mg/L

460

1120

Dup Result 450

1120

RPD

2

0

Max **RPD** Qualifiers

5

5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Analysis Method:

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

LABORATORY CONTROL SAMPLE.

Date: 05/08/2023 05:40 PM

QC Batch: 878020

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions WW 28 Day DU

Laboratory: Pace Analytical Services - Duluth, MN

EPA 300.0

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

METHOD BLANK: 4629172 Matrix: Water

4620472

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	04/27/23 16:44	
Fluoride	mg/L	ND	0.050	04/27/23 16:44	
Sulfate	mg/L	ND	1.0	04/27/23 16:44	

LABORATORT CONTROL SAMPLE.	4029173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	100	98.4	98	90-110	
Fluoride	mg/L	5	4.8	95	90-110	
Sulfate	mg/L	100	102	102	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4629174					4629175									
		10650929002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max			
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual		
Parameter	Units	— Result	Conc.	Conc.	Resuit	Resuit	% Kec	% Rec	Limits	KPD	KPD	Quai		
Chloride	mg/L	116	100	100	211	215	95	99	90-110	2	20			
Fluoride	mg/L	0.083	5	5	4.8	5.1	95	99	90-110	5	20			
Sulfate	mg/L	5.9	100	100	107	111	101	105	90-110	4	20			

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4629178						4629179						
			MS	MSD								
		10650929003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	122	100	100	217	213	94	90	90-110	2	20	
Fluoride	mg/L	0.087	5	5	4.8	4.6	95	91	90-110	4	20	
Sulfate	mg/L	7.0	100	100	106	104	99	97	90-110	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

QC Batch: 877736 Analysis Method: SM 4500-H+B-2011
QC Batch Method: SM 4500-H+B-2011 Analysis Description: 4500H+B pH, WW DU

Laboratory: Pace Analytical Services - Duluth, MN

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

LABORATORY CONTROL SAMPLE: 4627818

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers pH at 25 Degrees C Std. Units 7.0 100 98-102 H6

SAMPLE DUPLICATE: 4627819

10650628003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 7.5 10 H6 pH at 25 Degrees C Std. Units 7.5 0

SAMPLE DUPLICATE: 4627820

Date: 05/08/2023 05:40 PM

10650739001 Dup Max Parameter RPD RPD Result Result Qualifiers Units pH at 25 Degrees C 10 H6 7.4 7.2 2 Std. Units

Analysis Method:

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

QC Batch: 878072
QC Batch Method: EPA 200.7

Analysis Description: 200.7 MET

Laboratory: Pace Analytical Services - Minneapolis

EPA 200.7

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

METHOD BLANK: 4629578 Matrix: Water

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Calcium mg/L ND 0.50 05/01/23 10:32

LABORATORY CONTROL SAMPLE: 4629579

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Calcium 20 18.8 94 85-115 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4629580 4629581

MS MSD

10650525001 Spike Spike MS MSD MS MSD % Rec Max Units Result Result RPD Parameter Result Conc. Conc. % Rec % Rec Limits **RPD** Qual 20 Calcium mg/L 5.2 20 20 24.8 24.5 98 97 70-130

MATRIX SPIKE SAMPLE: 4629582

Date: 05/08/2023 05:40 PM

MS MS 10650907001 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 88800 ug/L Calcium 109 99 70-130 mg/L 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(218) 727-6380

QUALITY CONTROL DATA

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Boron

Date: 05/08/2023 05:40 PM

QC Batch: 878071 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

METHOD BLANK: 4629574 Matrix: Water

Associated Lab Samples: 10650724001, 10650724002, 10650724003, 10650724004, 10650724005, 10650724006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Boron ug/L ND 10.0 04/28/23 17:17

LABORATORY CONTROL SAMPLE: 4629575

Spike LCS LCS % Rec Conc. Limits Qualifiers Parameter Units Result % Rec 100 109 109 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4629576 4629577

MS MSD

10650726001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result **RPD** RPD Qual Result Conc. Result % Rec % Rec Limits 20 Boron ug/L 306 100 100 392 407 86 101 70-130

QUALIFIERS

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/08/2023 05:40 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 6385CC General Waste Apr-23

Pace Project No.: 10650724

Date: 05/08/2023 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10650724001		SM 2540C-2015	878196		
10650724002	MW8	SM 2540C-2015	878196		
10650724003	MW9	SM 2540C-2015	878196		
0650724004	MW10	SM 2540C-2015	878196		
0650724005	Field Duplicate	SM 2540C-2015	878196		
0650724006	Field Blank	SM 2540C-2015	878721		
0650724001	MW7	EPA 300.0	878020		
0650724002	MW8	EPA 300.0	878020		
0650724003	MW9	EPA 300.0	878020		
0650724004	MW10	EPA 300.0	878020		
0650724005	Field Duplicate	EPA 300.0	878020		
0650724006	Field Blank	EPA 300.0	878020		
0650724001	MW7	SM 4500-H+B-2011	877736		
0650724002	MW8	SM 4500-H+B-2011	877736		
0650724003	MW9	SM 4500-H+B-2011	877736		
0650724004	MW10	SM 4500-H+B-2011	877736		
0650724005	Field Duplicate	SM 4500-H+B-2011	877736		
0650724006	Field Blank	SM 4500-H+B-2011	877736		
0650724001	MW7	EPA 200.7	878072	EPA 200.7	878256
0650724002	MW8	EPA 200.7	878072	EPA 200.7	878256
0650724003	MW9	EPA 200.7	878072	EPA 200.7	878256
0650724004	MW10	EPA 200.7	878072	EPA 200.7	878256
0650724005	Field Duplicate	EPA 200.7	878072	EPA 200.7	878256
0650724006	Field Blank	EPA 200.7	878072	EPA 200.7	878256
0650724001	MW7	EPA 200.8	878071	EPA 200.8	878242
0650724002	MW8	EPA 200.8	878071	EPA 200.8	878242
0650724003	MW9	EPA 200.8	878071	EPA 200.8	878242
0650724004	MW10	EPA 200.8	878071	EPA 200.8	878242
0650724005	Field Duplicate	EPA 200.8	878071	EPA 200.8	878242
0650724006	Field Blank	EPA 200.8	878071	EPA 200.8	878242

Environmental Science & Engineering

NTS

526 CHESTNUT STREET

PAGE 1 OF 1

CHAIN OF CUSTODY RECORD

VIRGINIA, MN 55792 (218) 741-4290 Fax: (218) 741-4291 REQUIRED TURN-AROUND TIME: 2 Weeks from submittal date

WO#:10650724

CLIENT NAME,ADDRESS,PHONE#:		REPORT TO:				TYPE	&#(</th><th>CONT</th><th>AINER</th><th>PM: NMJ Due Date: 05/10/23</th></tr><tr><th colspan=3>GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA</th><th colspan=5>SCOTT SEELEY & KARISSA VOSEN</th><th colspan=2>VOC M. 8260 (HCL) GENERAL CHEMISTRY (NO PRES) GENERAL CHEMISTRY (H2SO4) TOTAL METALS (HN03) DISSOLVED METALS (HN03)</th><th>METALS (HN03)</th><th>S PM: NMJ Due Date: 05/10/23 CLIENT: DU-NTS-SCOTT</th></tr><tr><th>SAMPLER: Over Andrew</th><th>JS</th><th></th><th>PERMIT REQ.:</th><th>SW-620-002</th><th></th><th></th><th>N Z</th><th></th><th>ME</th><th>/ED /</th><th></th></tr><tr><td>PROJECT: GENERAL WASTE DISPOSAL</td><td></td><td>G. LLC.</td><td>, Little 1424</td><td>Apr-23</td><td></td><td></td><td>9 8</td><td>FRAL</td><td>OTA</td><td>SOLV</td><td></td></tr><tr><td></td><td>R Monitoirng</td><td></td><td>COLL</td><td>ECTION:</td><td>MATRIX</td><td>filterec</td><td>1 1</td><td>GEN</td><td></td><td>DIS</td><td></td></tr><tr><td></td><td>SAMPLE#</td><td>DESCRIPTION:</td><td>DATE:</td><td>TIME:</td><td>LIQ. SOL.</td><td></td><td></td><td></td><td></td><td></td><td>REQUIRED ANALYSIS:</td></tr><tr><td></td><td>MW7</td><td>GW WELL</td><td>4/25/23</td><td>1030</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td></td><td>MW8</td><td>GW WELL</td><td>4/25/23</td><td>1135</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td></td><td>MW9</td><td>GW WELL</td><td>4/25/23</td><td>1302</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td colspan=3>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td></td><td>MW10</td><td>GW WELL</td><td>4/25/23</td><td>1406</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td>Fiel</td><td>eld Duplicate</td><td>GW WELL</td><td>4/25/23</td><td>1407</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td>F</td><td>Field Blank</td><td>Field Blank</td><td>4/25/23</td><td>1410</td><td>х</td><td>N</td><td></td><td>1</td><td>1</td><td></td><td>Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS</td></tr><tr><td>RELINQUISHED BY:</td><td></td><td>DATE: 4/25/23 TIME: 1625</td><td>RECEIVED BY:</td><td></td><td></td><td></td><td></td><td></td><td>Т</td><td>ATE:</td><td></td></tr><tr><td colspan=3>RELINQUISHED TO NTS SAMPLE LOCK-UP BY: DATE: TIME:</td><td colspan=4>RECEIVED FROM NTS SAMPLE LOCKUP BY:</td><td colspan=4>DATE: TIME:</td><td></td></tr><tr><td>RECEIVED FOR LAB BY:</td><td></td><td></td><td>TEMP.AT ARRIVAL</td><td>c</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>110-110</td><td>1625</td><td></td><td>. 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Dilinary 1</td><td>300</td><td>sal ii</td><td>Mexi</td><td>~ WI</td><td>X1/2</td><td>2</td><td>5</td><td>-1</td><td>21</td><td></td><td></td></tr></tbody></table>
-----------------------------	--	------------	--	--	--	------	--

GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method	
Boron	В	200.8	
Calcium	Ca	200.7	
Chloride	Chloride	300.0	
Fluoride	Flouride	300.0	
рН	рН	SM 4500 H+B	
Sulfate	SO ₄	300.0	
TDS	TDS	SM 2540C	

Effective Date: 6/3/2022 WO#: 10650724 Client Name: Project #: Sample Condition **Upon Receipt** Courier: ☐ FedEx ☐ UPS ☐ USPS ☐ Client ☐ Pace ☐ SpeeDee ☐ Commercial ☐ See Exceptions Tracking Number: ENV-FRM-MIN4-0142 Custody Seal on Cooler/Box Present? ☐ Yes ☐ No Seals Intact? ☐ Yes ☐ No Biological Tissue Frozen? Yes No N/A Packing Material: Bubble Wrap ☐ Bubble Bags None ☐ Other Temp Blank? Yes ☐ No ☐ T3 (0459) Type of Ice: Wet Blue Dry Thermometer: T1 (0461) ☐ T2 (1336) ☐ None ☐ T4 (0254) T5 (0178) 01339252/1710 ☐ Melted Did Samples Originate in West Virginia? ☐ Yes ☐ No Were All Container Temps Taken? Yes ☐ No ☐ N/A Temp should be above freezing to 6 °C Cooler temp Read w/Temp Blank: Average Corrected Temp 5.6 (no temp blank only): DU 5.8 Correction Factor: 11) Cooler Temp Corrected w/temp blank: See Exceptions ENV-FRM-MIN4-0142 ☐ 1 Container USDA Regulated Soil: N/A, water sample/other: Date/Initials of Person Examining Contents: Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, Did samples originate from a foreign source (internationally, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No including Hawaii and Puerto Rico)? ☐ Yes ☐ No If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and include with SCUR/COC paperwork. COMMENTS Chain of Custody Present and Filled Out? Yes ☐ No Chain of Custody Relinquished? Yes ☐ No 2. Sampler Name and/or Signature on COC? **Yes** ☐ No □ N/A Samples Arrived within Hold Time? ✓ Yes □ No 4. If fecal: ☐ <8 hrs ☐ >8 hr, <24 ☐ No Short Hold Time Analysis (<72 hr)? ☐ Yes No ☐ Fecal Coliform ☐ HPC ☐ Total Coliform/E.coli ☐ BOD/cBOD ☐ Hex Chrom ☐ Turbidity ☐ Nitrate ☐ Nitrite ☐ Orthophos ☐ Other Rush Turn Around Time Requested? No No ☐ Yes Sufficient Sample Volume? Yes ☐ No Correct Containers Used? **Yes** ☐ No ☐ N/A -Pace Containers Used? □ No Yes Containers Intact? Yes No Field Filtered Volume Received for Dissolved Tests? ☐ Yes N/A 10. Is sediment visible in the dissolved container? Yes No Is sufficient information available to reconcile the samples to the ✓ Yes ☐ No 11. If no, write ID/Date/Time of container below: COC? ☐ See Exceptions Matrix: Water Soil Oil Other ENV-FRM-MIN4-0142 All containers needing acid/base preservation have been ☐ Yes ☐ No N/A 12. Sample # All containers needing preservation are found to be in compliance Yes □ No N/A ☐ NaOH ☐ HNO3 with EPA recommendation? ☐ H2SO4 ☐ Zinc Acetate (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 Yes No Positive for Residual ☐ Yes ☐ See Exceptions (water) and Dioxins/PFAS ENV-FRM-MIN4-0142 Chlorine? ☐ No (*If adding preservative to a container, it must be added to pH Paper Lot # associated field and equipment blanks--verify with PM first.) Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip Headspace in Methyl Mercury Container? Yes ☐ No N/A 13. Extra labels present on soil VOA or WIDRO containers? ☐ Yes ☐ No N/A 14. ☐ See Exceptions ☐ Yes ☐ No Headspace in VOA Vials (greater than 6mm)? ZN/A ENV-FRM-MIN4-0142 3 Trip Blanks Present? ☐ Yes ☐ No 15. N/A Trip Blank Custody Seals Present? ☐ Yes ☐ No N/A Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution: Nikki Staton Project Manager Review: 04/27/23

DC#_Title: ENV-FRM-MIN4-0150 v06 Sample Condition Upon Receipt (SCUR)

NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers)

Date:

Intra-Regional Chain of Custody

Workorder Name: 6385CC General Wa Workorder: 10650724

Send To Lab:

Pace Analytical Minnesota

1700 Elm Street

Pace Analytical Virginia 315 Chestnut Street Virginia, MN 55792 Phone (218) 336-2110

Received at:

Minneapolis, MN 55414 Phone (612)607-1700

EPA.200.8

FPA 200.7

<u>NE48</u>

LAB USE ONLY

003

200

00

000

700

Z

Samples Intact (Y) or

Received on Ice (Y) or

4127123 0806

Date/Time

Received By

Date/Time

21 12/14

Released By

Transfers

ELLAN CLUXIAN/ACCC 4-27223 1041

1040

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

_ ____

Custody Seal

0 /5 °C

Cooler Temperature on Receipt

This chain of custody is considered complete as is since this information is available in the owner laboratory.

WO#: 10650724

500

×

Water Water Water Water

10650724003 10650724002

4/25/2023 13:02

4/25/2023 11:35

10650724004 10650724005 10650724006

4/25/2023 14:06

4/25/2023 14:10

4/25/2023 14:07

<u>ନ</u> ଅ Sd

Field Duplicate

MW10

MW8 WW9

MW7

Field Blank

Water Water

10650724001

4/25/2023 10:30

S S S

Lab D

Date/Time

Sample Type

Sample ID

Report To: Nikki Staton

×

	5/10/20	
***************************************	Date:	

യ		8
=		Į3
_		š
$\boldsymbol{\cap}$		1
_	_	12
		8
		ă
	1	13
	- 1	ä
	1	2
	1	×
	- 1	ĕ
G)		8
Λì		К
⋍	- 1	'n,
v	-	à
∾	-	Œ
•	- 1	ŝ
ıñ	- 1	ņ,
21	- 1	S
1/25/2023	1	п
-		13
₹	1	罐
•	- 1	1
		×

23

_	648/3
1	
•	ENGINEER PROPERTY.
Φ.	(\$15,Q)
_	45580
-	2.50
- 1	207 403
-	100
NI I	No. of
v	4.00
	1622.0
_, ,	

0	¥.
Ξ	
Ś	
23	
ate:	
æ	
ш	
Φ	250

	ર્સ	Section of
~~~	ate:	Photography services
	ne D	Second Constitution
	<b>-</b>	245527

Pace Analytical www.pacelebs.com

ner Received Date: 4/25/2023 Due Date	aste Apr-23 Owner Received Date: 4/25/2023 Due D
ner Received Date: 4/25/2023	0
ner Received Date:	0
	0

Page 20 of 21 Page 20 of 24

FMT-ALL-C-002rev.00 24March2009

DC#_Title: ENV-FRM-MIN4-0150 v13_Sample Condition Upon Receipt (SCUR) Effective Date: 4/14/2023 Client Name: Project #: Sample Condition WO#:10650724 **Upon Receipt** JedEx UPS USPS ☐ Client CLIENT: DU-NTS-SCOTT Pace SpeeDee Commercial See Exceptions **Tracking Number:** ENV-FRM-MIN4-0142 Custody Seal on Cooler/Box Present? Yes V No Seals Intact? Yes V No Biological Tissue Frozen? Yes □ No Packing Material: Bubble Wrap Bubble Bags **V** None Other Temp Blank? V Yes No Thermometer: T1 (0461) T2 (0436) T3 (0459) T4 (0402) T5 (0178) Type of Ice: Wet Blue Dry T6 (0235) T7 (0042) T8 (0775) T9(0727) 01339252/1710 Melted Did Samples Originate in West Virginia? No No Were All Container Temps Taken? Yes Yes N/A Temp should be above freezing to 6 °C Cooler temp Read w/Temp Blank: 0,2 Average Corrected Temp (no temp blank only): Correction Factor: +0,3 Cooler Temp Corrected w/temp blank: 0 See Exceptions ENV-FRM-MIN4-01-42 1 Container USDA Regulated Soil: ( N/A water sample/other: Date/Initials of Person Examining Contents: EC4-27-23 Did samples originate in a quarantine zone within the United States: AL, AR, AZ CA, FL, Did samples originate from a foreign source (internationally, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No including Hawaii and Puerto Rico)? Yes No If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and include with SCUR/COC paperwork. Location (Check one): Duluth Minneapolis Virginia COMMENTS Chain of Custody Present and Filled Out? Yes Chain of Custody Relinquished? Yes No Sampler Name and/or Signature on COC? V N/A Yes No Samples Arrived within Hold Time? Yes No 4. If fecal: <8 hrs >8 hr, <24 No Short Hold Time Analysis (<72 hr)? Fecal Coliform | HPC | Total Coliform/E.coli BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other Rush Turn Around Time Requested? Yes No Sufficient Sample Volume? No Yes Correct Containers Used? Yes No N/A -Pace Containers Used? Жes No Containers Intact? Yes No Field Filtered Volume Received for Dissolved Tests? Yes No N/A 10. Is sediment visible in the dissolved container? Yes Is sufficient information available to reconcile the samples to the 11. If no, write ID/Date/Time of container below: COC? See Exceptions Matrix: Water Soil Oil ENV-FRM-MIN4-0142 All containers needing acid/base preservation have been N/A 12. Sample # **Q**() **-**(/) **b** No checked? All containers needing preservation are found to be in compliance with EPA recommendation? H2SO4 (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 No Positive for Residual Yes See Exceptions (water) and Dioxins/PFAS Chlorine? No ENV-FRM-MIN4-0142 (*If adding preservative to a container, it must be added to pH Paper Lot # associated field and equipment blanks--verify with PM first.) Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip Headspace in Methyl Mercury Container? Yes No N/A 13. Extra labels present on soil VOA or WIDRO containers? Yes No N/A 14. See Exceptions Headspace in VOA Vials (greater than 6mm)? Yes No A/I/A ENV-FRM-MIN4-0142 3 Trip Blanks Present? Yes No N/A 15. Trip Blank Custody Seals Present? Yes No Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION

Project Manager Review: Date: 04/28/23 NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers).

Labeled By: ***

Date/Time:

Field Data Required? Yes

Person Contacted:

Comments/Resolution:

# NTS

# **Laboratory Report Review Checklist**

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290 6385CC_2023 (Spring) 0425(CA) Printed: 5/9/2023 11:53:16 AM Environmental Science & Engineering

**Report:** 10650724

Samples not Collected by NTS:		Lab:		Revised Lab	Report:		
Reviewer #1:	Date:	Reviewer #2:	Date:				
Carrie Jensen	5/9/2023						
SAMPLE HANDLING AND PRESERY	/ATION			-	Yes:	No:	N/A:
A copy of the chain of custody (CO		with the final report a	nd field parameters (if inclu				
correctly reported by the laborato					✓		Ш
A sample condition upon receipt f		· · · · · · · · · · · · · · · · · · ·			✓		
Samples were received by the laboration as	oratory with pro	oper preservation (i.e.	, on ice and/or in correct co	ontainer	<b>✓</b>		
types) Samples were received and analyz	ed by the labor	ratory within method :	equired holding times			<b>✓</b>	
Any results associated with incorre			_ ·	the report	<b>V</b>		
pH analysis initiated outside o	f the 15 minute	e required EPA holding	time; data qualified.				
CALIBRATION					Yes:	No:	N/A:
The report narrative or data qualif	iers indicate th	ere were calibration fa	nilures for any of the requir			<b>V</b>	
METHOD BLANKS					Yes:	No:	N/A:
A method blank was analyzed for a	all applicable ar	nalytical methods			<b>✓</b>	NO.	IN/A.
All method blanks are free of targe		, ,			<b>V</b>		
If any analytes were detected	d in the method	l blank, the detected a	nalytes were qualified in th	e			<b>~</b>
associated samples							
Comments							
LABORATORY CONTROL SAMPLES					Yes:	No:	N/A:
Laboratory control limits are listed guidelines in the MPCA Laboratory	•		-	gested	<b>✓</b>		
An LCS was prepared and analyzed			The state of the s	g reported	<b>✓</b>		
The percent recovery of all target	•				<b>✓</b>		
If any analytes had a percent associated samples	recovery outside	de of laboratory contro	ol limits, qualifiers were ad	ded to the			<b>✓</b>
Comments							

MATRIX SPIKES/MATRIX SPIKE DUPLICATES (MS/MSD)	Yes:	No:	N/A:
An MS/MSD was prepared and analyzed for each applicable analytical method and contains all target analytes being reported	<b>~</b>		
If no, was an alternate spiked sample processed instead (such as an LCS duplicate)			<b>✓</b>
Laboratory control limits are listed on the report and seem reasonable when compared to the suggested	<b>✓</b>		
guidelines in the MPCA Laboratory Quality Control and Data Policy (p-eao2-09a)  The percent recovery of all target analytes are within laboratory control limits	<b>✓</b>		
The relative percent difference (RPD) is within laboratory control limits for all target analytes	<b>V</b>		
If any analytes had a percent recovery or RPD outside of laboratory control limits, qualifiers were added			<b>✓</b>
to the parent sample			
Comments			
LABORATORY DUPLICATES	Yes:	No:	N/A:
A laboratory duplicate was prepared and analyzed for each applicable analytical method	<b>✓</b>		
The RPD for the duplicate pair is within laboratory control limits	✓		
If any analytes had an RPD outside of laboratory control limits, qualifiers were added to the parent sample			<b>~</b>
Comments			
SURROGATES	Yes:	No:	N/A:
Laboratory control limits are listed on the report and seem reasonable when compared to the suggested		П	<b>✓</b>
guidelines in the MPCA Laboratory Quality Control and Data Policy (p-eao2-09a)			
The percent recovery of all surrogate compounds are within laboratory control limits  If any surrogate had a percent recovery outside of laboratory control limits, qualifiers were added to the			✓
surrogate compound			<b>✓</b>
Comments			
FIELD DUPLICATES	Yes:	No:	N/A:
A field duplicate was required for this project	<b>✓</b>		
The RPD for the duplicate pair is within NTS control limits (20%)	<b>✓</b>		
If any analytes had an RPD outside of NTS control limits, qualifiers were added to the parent sample Field Duplicate taken at MW10.			<b>✓</b>
FIELD, EQUIPMENT, TRIP BLANKS	Yes:	No:	N/A:
A field, equipment, and/or trip blank was required for this project	<b>✓</b>		
The blank is free of target analytes	<b>✓</b>		
If any analytes were detected in the blank, were the detected analytes qualified in the associated samples			<b>✓</b>
Field Blank analyzed for this project.			

ADDITIONAL CHECKS	Yes:	No:	N/A:
All data within this report (including subcontracted analyses) have been uploaded to the NTS database and correctly reflect the results reported by the laboratory	<b>✓</b>		
·			
Analysis to the method detection limit (MDL) was required for this laboratory report		✓	
If analysis to the MDL was required, data was appropriately qualified with J flags			<b>✓</b>
Non-detects are not reported off dilutions or dilution factors are typical of past events	✓		
Dissolved, speciated, or fractional results are less than (or exceed by no more than 20%) total results			<b>✓</b>
All lab results were evaluated against the associated permit limits or appear typical of past monitoring events	✓		
All lab calculations are accurate against NTS calculations	✓		
Per historical data:			
Sulfate at MW10 is higher; Boron at MW8 is higher.			

# **DEFINITIONS**

COC = chain of custody

LCS/LCSD = laboratory control sample/laboratory control sample duplicate

MDL = method detection limit

MPCA = Minnesota Pollution Control Agency

MS/MSD = matrix spike/matrix spike duplicate

RPD = relative percent difference

# **Definitions**

GW = groundwater, SOPs = standard operating procedures



October 31, 2023

Scott Seeley Northeast Technical Services 526 Chestnut Street Virginia, MN 55792

RE: Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

# Dear Scott Seeley:

Enclosed are the analytical results for sample(s) received by the laboratory on October 16, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Duluth, MN
- Pace Analytical Services Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mikki Station

Nikki Staton nikki.staton@pacelabs.com (218) 336-2110 Project Manager

#### Enclosures

cc: Andrew Altobell, Northeast Technical Services
Allison Byrd, Northeast Technical Services
Sample Data, Northeast Technical Services
Carrie Jensen, Northeast Technical Services
Mikayla Mellesmoen, Northeast Technical Services
Alan Phillips, Dem-Con Companies
Karissa Vosen, Northeast Technical Services







# **CERTIFICATIONS**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137
Florida Certification #: E87605
Georgia Certification #: 959
GMP+ Certification #: GMP050884
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062

Louisiana DEQ Certification #: Al-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100

Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244
Ohio VAP Certification (1700) #: CL101
Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163

Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

#### Pace Analytical Services, LLC - Duluth MN

4730 Oneota Street, Duluth, MN 55807 Minnesota Certification #: 027-137-152

Minnesota Dept of Ag Approval: via Minnesota 027-137-

152

Minnesota Petrofund Registration #: 1240 Montana Certification #: CERT0102 Nevada Certification #: MN00037 North Dakota Certification #: R-105 Wisconsin Certification #: 999446800 Wisconsin Dept of Ag Certification: 480341



# **SAMPLE SUMMARY**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10672461001	MW7	Water	10/16/23 11:40	10/16/23 15:23
10672461002	MW8	Water	10/16/23 12:23	10/16/23 15:23
10672461003	MW9	Water	10/16/23 10:59	10/16/23 15:23
10672461004	MW10	Water	10/16/23 11:43	10/16/23 15:23
10672461005	Field Duplicate	Water	10/16/23 11:00	10/16/23 15:23
10672461006	Field Blank	Water	10/16/23 10:56	10/16/23 15:23



# **SAMPLE ANALYTE COUNT**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10672461001	MW7	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M
10672461002	MW8	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M
0672461003	MW9	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M
0672461004	MW10	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M
0672461005	Field Duplicate	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M
0672461006	Field Blank	SM 2540C-2015	NGT	1	PASI-DU
		EPA 300.0	JA2	3	PASI-DU
		SM 4500-H+B-2011	CD3	1	PASI-DU
		EPA 200.7	DM	1	PASI-M
		EPA 200.8	DJM	1	PASI-M

PASI-DU = Pace Analytical Services - Duluth, MN PASI-M = Pace Analytical Services - Minneapolis



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

200.7 MET ICP  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Minneapolis  Calcium  498 mg/L  0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2  200.8 MET ICPMS  Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Minneapolis  Boron  84.9 ug/L  50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8  Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters  Results  Units  Report Limit  DF  Prepared  Analyzed  CAS No.  2540C TDS DU  Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L  40.0 1  10/19/23 10:00  300.0 IC Anions WW 28 Day DU  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  1.0 1  10/20/23 04:20 16887-00-6 Fluoride  0.060 mg/L  0.050 1  10/20/23 04:20 16984-48-8 Sulfate  825 mg/L  5.0 5  10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN	Sample: MW7	Lab ID: 106	72461001	Collected: 10/16/	23 11:40	Received: 1	0/16/23 15:23	Matrix: Water	
Pace Analytical Services - Duluth, MN	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Total Dissolved Solids  2470 mg/L 333 1 10/19/23 10:00  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.9 mg/L 0.050 1 10/20/23 01:16 16887-00-6 Fluoride  0.072 mg/L 0.050 1 10/20/23 01:16 16984-8-8 Sulfate  1370 mg/L 10.0 10 10/20/23 03:11 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  6.9 Std. Units 0.10 1 10/18/23 09:13 Fe 200.7 MET ICP  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Preparation Method: EPA 200.7 Preparation Method: EPA 200.8 Preparation Method: EPA 200.7 Pre	2540C TDS DU	Analytical Met	hod: SM 2540	OC-2015					
Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  1.9 mg/L 1.0 1 10/20/23 01:16 16887-00-6 Pace Analytical Services - Duluth, MN  1.9 mg/L 0.050 1 10/20/23 03:11 14808-79-8  4500H+B pH, WW DU Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  PH at 25 Degrees C 6.9 Std. Units 0.10 1 10/18/23 09:13 Pace Analytical Services - Minneapolis  Calcium 498 mg/L 0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2  200.8 MET ICPMS Analytical Services - Minneapolis  Boron 84.9 ug/L 50.0 5 10/23/23 08:45 10/26/23 15:35 7440-42-8  Sample: MW8 Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters Results Units Report Limit DF Prepared Analytical Services - Duluth, MN  Total Dissolved Solids 1790 mg/L 40.0 1 10/19/23 10:00  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride 1.4 mg/L 40.0 1 10/20/23 04:20 16887-00-6 Fluoride 0.060 mg/L 0.050 1 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23 16:33 14808-79-8 10/20/23		Pace Analytic	al Services - [	Duluth, MN					
Pace Analytical Services - Duluth, MN	Total Dissolved Solids	2470	mg/L	333	1		10/19/23 10:0	0	
Chloride	300.0 IC Anions WW 28 Day DU	Analytical Met	hod: EPA 300	0.0					
Fluoride Sulfate 0.072 mg/L 0.050 1 10/20/23 01:16 16984-48-8 Sulfate 1370 mg/L 10.0 10 10 10/20/23 01:16 16984-48-8 Sulfate 1370 mg/L 10.0 10 10 10/20/23 03:11 14808-79-8 4500H+B pH, WW DU Analytical Method: SM 4500H+B-2011 Pace Analytical Services - Duluth, MN PH at 25 Degrees C 6.9 Std. Units 0.10 1 10/18/23 09:13 Pec 200.7 MET ICP Analytical Services - Minneapolis Calcium 498 mg/L 0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2 200.8 MET ICPMS Analytical Services - Minneapolis Boron 84.9 ug/L 50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8    Sample: MW8 Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. 2540C TDS DU Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN    Total Dissolved Solids 1790 mg/L 40.0 1 10/19/23 10:00    Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN    Chloride 1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride 0.060 mg/L 0.050 1 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16887-00-6 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/23 04:20 16984-48-8 Sulftate 825 mg/L 5.0 5 10/20/		Pace Analytic	al Services - [	Duluth, MN					
Sulfate 1370 mg/L 10.0 10 10/20/23 03:11 14808-79-8 4500H+B pH, WW DU Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  pH at 25 Degrees C 6.9 Std. Units 0.10 1 10/18/23 09:13 Pace Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Minneapolis  Calcium 498 mg/L 0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Minneapolis  Boron 84.9 ug/L 50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8 Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No.  2540C TDS DU Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN  Total Dissolved Solids 1790 mg/L 40.0 1 10/19/23 10:00  300.0 IC Anions WW 28 Day DU Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride 1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride 0.060 mg/L 0.050 1 10/20/23 04:20 16887-00-6 Fluoride 0.060 mg/L 0.050 1 10/20/23 04:20 16984-48-8 Sulfate 825 mg/L 5.0 5 10/20/23 16:33 14808-79-8 4500H+B pH, WW DU Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Chloride	1.9	mg/L	1.0	1		10/20/23 01:1	6 16887-00-6	
Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN PH at 25 Degrees C 6.9 Std. Units 0.10 1 10/18/23 09:13 H 200.7 MET ICP Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Minneapolis Calcium 498 mg/L 0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Minneapolis Boron 84.9 ug/L 50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8 Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No.  2540C TDS DU Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN Total Dissolved Solids 1790 mg/L 40.0 1 10/19/23 10:00 Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN Chloride 1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 10/20/23 04:20 16984-48-8 Sulfate 825 mg/L 5.0 5 10/20/23 16:33 14808-79-8 4500H+B pH, WW DU Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN PH at 25 Degrees C 7.0 Std. Units 0.10 1 10/18/23 09:19 H 200.7 MET ICP Analytical Method: EPA 200.7 Preparation Method: EPA 200.7			Ū						
Pace Analytical Services - Duluth, MN  6H at 25 Degrees C  6.9 Std. Units  0.10 1  10/18/23 09:13  Face Analytical Method: EPA 200.7 Preparation Method: EPA 200.7  Pace Analytical Services - Minneapolis  Calcium  498 mg/L  0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2  200.8 MET ICPMS  Analytical Method: EPA 200.8 Preparation Method: EPA 200.8  Pace Analytical Services - Minneapolis  Boron  84.9 ug/L  50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8  Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water  Parameters  Results  Units  Report Limit  DF  Prepared  Analyzed  CAS No.  2540C TDS DU  Analytical Method: SM 2540C-2015  Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L  Analytical Method: EPA 300.0  Pace Analytical Services - Duluth, MN  Chalonios WW 28 Day DU  Analytical Method: EPA 300.0  Pace Analytical Services - Duluth, MN  1.4 mg/L  1.0 1 10/20/23 04:20 16887-00-6  Fluoride  0.660 mg/L  0.050 1 10/20/23 04:20 16887-00-6  Fluoride  0.660 mg/L  0.050 1 1 10/20/23 04:20 16984-48-8  825 mg/L  5.0 5 10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011  Pace Analytical Services - Duluth, MN  OH at 25 Degrees C  7.0 Std. Units  0.10 1 10/18/23 09:19 H-  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Sulfate	1370	mg/L	10.0	10		10/20/23 03:1	1 14808-79-8	
### PH at 25 Degrees C	4500H+B pH, WW DU	Analytical Met	hod: SM 4500	)-H+B-2011					
200.7 MET ICP  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Minneapolis  Calcium  498 mg/L  0.50 1 10/23/23 08:45 10/24/23 12:33 7440-70-2  200.8 MET ICPMS  Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Minneapolis  Boron  84.9 ug/L  50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8  Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters  Results  Units  Report Limit  DF  Prepared  Analyzed  CAS No.  2540C TDS DU  Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  1.0 1 10/20/23 04:20 16887-00-6 Fluoride  0.060 mg/L  0.050 1 10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  PH at 25 Degrees C  7.0 Std. Units  0.10 1 10/18/23 09:19 F-200.7		Pace Analytic	al Services - [	Duluth, MN					
Pace Analytical Services - Minneapolis	pH at 25 Degrees C	6.9	Std. Units	0.10	1		10/18/23 09:1	3	H6
Analytical Method: EPA 200.8   Preparation Method: EPA 200.8   Pace Analytical Services - Minneapolis	200.7 MET ICP	Analytical Met	hod: EPA 200	.7 Preparation Me	thod: EP	A 200.7			
Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Minneapolis  Boron  84.9 ug/L  50.0 5 10/23/23 08:40 10/26/23 15:35 7440-42-8  Sample: MW8  Lab ID: 10672461002 Collected: 10/16/23 12:23 Received: 10/16/23 15:23 Matrix: Water Parameters  Results  Units  Report Limit  DF  Prepared  Analyzed  CAS No.  2540C TDS DU  Analytical Method: SM 2540C-2015  Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L  40.0 1  10/19/23 10:00  Analytical Method: EPA 300.0  Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  1.0 1  10/20/23 04:20 16887-00-6  Fluoride  0.060 mg/L  0.050 1  10/20/23 04:20 16984-48-8  Sulfate  825 mg/L  5.0 5  10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011  Pace Analytical Services - Duluth, MN  PH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19 F-200.7  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7		Pace Analytic	al Services - N	Minneapolis					
Pace Analytical Services - Minneapolis	Calcium	498	mg/L	0.50	1	10/23/23 08:4	5 10/24/23 12:3	3 7440-70-2	
Sample: MW8	200.8 MET ICPMS	Analytical Met	hod: EPA 200	.8 Preparation Me	thod: EP	A 200.8			
Sample: MW8		Pace Analytic	al Services - N	Minneapolis					
Parameters         Results         Units         Report Limit         DF         Prepared         Analyzed         CAS No.           2540C TDS DU         Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN         10/19/23 10:00           300.0 IC Anions WW 28 Day DU         Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN           Chloride         1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride           Fluoride         0.060 mg/L 0.050 1 10/20/23 04:20 16984-48-8 Sulfate           4500H+B pH, WW DU         Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN           pH at 25 Degrees C         7.0 Std. Units 0.10 1 10/18/23 09:19 Feature Method: EPA 200.7           200.7 MET ICP         Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Boron	84.9	ug/L	50.0	5	10/23/23 08:40	0 10/26/23 15:3	5 7440-42-8	
Parameters         Results         Units         Report Limit         DF         Prepared         Analyzed         CAS No.           2540C TDS DU         Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN         10/19/23 10:00           300.0 IC Anions WW 28 Day DU         Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN           Chloride         1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride           Fluoride         0.060 mg/L 0.050 1 10/20/23 04:20 16984-48-8 Sulfate           4500H+B pH, WW DU         Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN           pH at 25 Degrees C         7.0 Std. Units 0.10 1 10/18/23 09:19 Feature Method: EPA 200.7           200.7 MET ICP         Analytical Method: EPA 200.7 Preparation Method: EPA 200.7									
Analytical Method: SM 2540C-2015 Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L 40.0 1 10/19/23 10:00  300.0 IC Anions WW 28 Day DU  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride  0.060 mg/L 0.050 1 10/20/23 04:20 16984-48-8 Sulfate  825 mg/L 5.0 5 10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units 0.10 1 10/18/23 09:19 F-  200.7 MET ICP  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Sample: MW8	Lab ID: 106	572461002	Collected: 10/16/	23 12:23	Received: 1	0/16/23 15:23	Matrix: Water	
Pace Analytical Services - Duluth, MN  Total Dissolved Solids  1790 mg/L 40.0 1 10/19/23 10:00  300.0 IC Anions WW 28 Day DU  Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L 1.0 1 10/20/23 04:20 16887-00-6 Fluoride  0.060 mg/L 0.050 1 10/20/23 04:20 16984-48-8 Sulfate  825 mg/L 5.0 5 10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units 0.10 1 10/18/23 09:19 H  200.7 MET ICP  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Total Dissolved Solids  1790 mg/L 40.0 1 10/19/23 10:00  300.0 IC Anions WW 28 Day DU	2540C TDS DU	Analytical Met	hod: SM 2540	OC-2015					
Analytical Method: EPA 300.0 Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  0.050 1  10/20/23 04:20 16887-00-6 Fluoride  0.060 mg/L  0.050 1  10/20/23 04:20 16984-48-8 Sulfate  825 mg/L  5.0 5  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  PH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7		Pace Analytic	al Services - [	Duluth, MN					
Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  0.060 mg/L  0.050 1  10/20/23 04:20 16887-00-6  Fluoride  825 mg/L  5.0 5  10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011  Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Total Dissolved Solids	1790	mg/L	40.0	1		10/19/23 10:0	0	
Pace Analytical Services - Duluth, MN  Chloride  1.4 mg/L  0.060 mg/L  0.050 1  10/20/23 04:20 16887-00-6  Fluoride  825 mg/L  5.0 5  10/20/23 16:33 14808-79-8  4500H+B pH, WW DU  Analytical Method: SM 4500-H+B-2011  Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	300.0 IC Anions WW 28 Day DU	Analytical Met	hod: EPA 300	0.0					
Fluoride		•							
Sulfate         825         mg/L         5.0         5         10/20/23 16:33         14808-79-8           4500H+B pH, WW DU         Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN         Pace Analytical Services - Duluth, MN         10/18/23 09:19         Pace Analytical Method: EPA 200.7         Preparation Method: EPA 200.7	Chloride	1.4	mg/L	1.0	1		10/20/23 04:2	0 16887-00-6	
Analytical Method: SM 4500-H+B-2011 Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Fluoride	0.060	•	0.050	1		10/20/23 04:2	0 16984-48-8	
Pace Analytical Services - Duluth, MN  pH at 25 Degrees C  7.0 Std. Units  0.10 1  10/18/23 09:19  Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	Sulfate	825	mg/L	5.0	5		10/20/23 16:3	3 14808-79-8	
pH at 25 Degrees C 7.0 Std. Units 0.10 1 10/18/23 09:19 F 200.7 MET ICP Analytical Method: EPA 200.7 Preparation Method: EPA 200.7	4500H+B pH, WW DU	Analytical Met	hod: SM 4500	)-H+B-2011					
200.7 MET ICP Analytical Method: EPA 200.7 Preparation Method: EPA 200.7		Pace Analytic	al Services - [	Duluth, MN					
·	pH at 25 Degrees C	7.0	Std. Units	0.10	1		10/18/23 09:1	9	H6
·	200.7 MET ICP	Analytical Met	hod: EPA 200	0.7 Preparation Me	thod: EP	A 200.7			
		Pace Analytic	al Services - N	Minneapolis					
Calcium 387 mg/L 0.50 1 10/23/23 08:45 10/24/23 12:35 7440-70-2	Calcium	387	mg/L	0.50	1	10/23/23 08:4	5 10/24/23 12:3	5 7440-70-2	



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

Pace Project No.: 10672461									
Sample: MW8	Lab ID: 106	672461002	Collected:	10/16/2	23 12:23	Received: 10	D/16/23 15:23 I	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical Me Pace Analytic				thod: EP	A 200.8			
Boron	76.8	ug/L		50.0	5	10/23/23 08:40	10/26/23 16:06	7440-42-8	
Sample: MW9	Lab ID: 100	672461003	Collected:	10/16/2	23 10:59	Received: 10	D/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	Analytical Me								
Total Dissolved Solids	1190	mg/L		40.0	1		10/19/23 10:01		
300.0 IC Anions WW 28 Day DU	Analytical Me Pace Analytic								
Chloride	8.0	mg/L		1.0	1		10/20/23 05:29	16887-00-6	
Fluoride	0.084	mg/L		0.050	1		10/20/23 05:29		
Sulfate	431	mg/L		2.0	2		10/25/23 06:03	14808-79-8	
4500H+B pH, WW DU	Analytical Me Pace Analytic								
pH at 25 Degrees C	6.7	Std. Units	3	0.10	1		10/18/23 09:21		H6
200.7 MET ICP		Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Minneapolis							
Calcium	213	mg/L		0.50	1	10/23/23 08:45	10/24/23 12:37	7440-70-2	
200.8 MET ICPMS	Analytical Me				thod: EP	A 200.8			
Boron	ND	ug/L		50.0	5	10/23/23 08:40	10/26/23 16:12	2 7440-42-8	D3
Sample: MW10	Lab ID: 100	672461004	Collected:	10/16/2	23 11:43	Received: 10	D/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2540C TDS DU	Analytical Me								
Total Dissolved Solids	920	mg/L		20.0	1		10/19/23 10:00	)	
300.0 IC Anions WW 28 Day DU	Analytical Me Pace Analytic								
Chloride	1.1	mg/L		1.0	1		10/20/23 05:52	16887-00-6	
Fluoride	0.16	mg/L		0.050	1		10/20/23 05:52	16984-48-8	
Sulfate	427	mg/L		2.0	2		10/20/23 18:05	14808-79-8	



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

Pace Project No.: 10672461									
Sample: MW10	Lab ID: 10	672461004	Collected:	10/16/2	23 11:43	Received: 1	0/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500H+В рН, WW DU	Analytical Me Pace Analytic								
pH at 25 Degrees C	7.4	Std. Units		0.10	1		10/18/23 09:2	4	H6
200.7 MET ICP	Analytical Me Pace Analytic			tion Met	hod: EP	A 200.7			
Calcium	189	mg/L		0.50	1	10/23/23 08:45	5 10/24/23 12:4	2 7440-70-2	
200.8 MET ICPMS	Analytical Me Pace Analytic			tion Met	hod: EP	A 200.8			
Boron	ND	ug/L		50.0	5	10/23/23 08:40	10/26/23 16:1	8 7440-42-8	D3
Sample: Field Duplicate	Lab ID: 100	672461005	Collected:	10/16/2	23 11:00	Received: 1	0/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	Analytical Me Pace Analytic					·			
Total Dissolved Solids	1190	mg/L		40.0	1		10/19/23 10:0	0	
300.0 IC Anions WW 28 Day DU	Analytical Me Pace Analytic								
Chloride Fluoride Sulfate	7.9 0.083 443	mg/L mg/L mg/L		1.0 0.050 2.0	1 1 2		10/20/23 06:1	5 16887-00-6 5 16984-48-8 8 14808-79-8	
4500H+B pH, WW DU	Analytical Me Pace Analytic								
pH at 25 Degrees C	6.7	Std. Units		0.10	1		10/18/23 09:2	5	H6
200.7 MET ICP	Analytical Me Pace Analytic			tion Met	hod: EP/	A 200.7			
Calcium	219	mg/L		0.50	1	10/23/23 08:45	5 10/24/23 12:4	4 7440-70-2	
200.8 MET ICPMS	Analytical Me Pace Analytic			tion Met	hod: EP/	A 200.8			
Boron	ND	ug/L		50.0	5	10/23/23 08:40	10/26/23 16:2	4 7440-42-8	D3
Sample: Field Blank	Lab ID: 10	672461006	Collected:	10/16/2	23 10:56	Received: 1	0/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C TDS DU	Analytical Me Pace Analytic								
Total Dissolved Solids	ND	mg/L	•	10.0	1		10/19/23 10:0	0	



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

Sample: Field Blank	Lab ID:	10672461006	Collected:	10/16/2	23 10:56	Received: 1	10/16/23 15:23	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions WW 28 Day DU	Analytical N	Method: EPA 30	0.00						
	Pace Analy	tical Services -	Duluth, MN						
Chloride	ND	mg/L		1.0	1		10/20/23 07:24	16887-00-6	
Fluoride	ND	mg/L		0.050	1		10/20/23 07:24	1 16984-48-8	
Sulfate	ND	mg/L		1.0	1		10/20/23 07:24	14808-79-8	
4500H+B pH, WW DU	Analytical N	Method: SM 45	00-H+B-2011						
	Pace Analy	tical Services -	Duluth, MN						
pH at 25 Degrees C	7.4	Std. Units	3	0.10	1		10/18/23 09:27	7	H6
200.7 MET ICP	Analytical N	Method: EPA 20	00.7 Preparat	ion Met	hod: EPA	A 200.7			
	Pace Analy	rtical Services -	Minneapolis						
Calcium	ND	mg/L		0.50	1	10/23/23 08:4	5 10/24/23 12:4	5 7440-70-2	
200.8 MET ICPMS	Analytical N	Method: EPA 20	0.8 Preparat	ion Met	hod: EP/	A 200.8			
	Pace Analy	rtical Services -	Minneapolis						
Boron	ND	ug/L		10.0	1	10/23/23 08:4	0 10/26/23 16:3	1 7440-42-8	



6385CC Gen Waste CCR Oct 2023 Project:

Pace Project No.: 10672461

QC Batch: 912850 Analysis Method: SM 2540C-2015 QC Batch Method: SM 2540C-2015 Analysis Description: 2540C TDS DU

> Laboratory: Pace Analytical Services - Duluth, MN

10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Total Dissolved Solids ND 10.0 10/19/23 09:59 mg/L

mg/L

METHOD BLANK: 4803601 Matrix: Water

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers Total Dissolved Solids ND 10.0 10/19/23 10:01

LABORATORY CONTROL SAMPLE: 4803598

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 618 648 105 80-120

SAMPLE DUPLICATE: 4803599

10672754007 Dup Max Parameter Units Result RPD RPD Qualifiers Result 185 **Total Dissolved Solids** mg/L 195 5 10

SAMPLE DUPLICATE: 4803600

Date: 10/31/2023 03:45 PM

10672754006 Dup Max Parameter Units Result **RPD RPD** Qualifiers Result 239 Total Dissolved Solids mg/L 236 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

LABORATORY CONTROL CAMPLE

Date: 10/31/2023 03:45 PM

QC Batch: 912928 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions WW 28 Day DU

Laboratory: Pace Analytical Services - Duluth, MN

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

METHOD BLANK: 4803946 Matrix: Water

4002047

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	10/20/23 00:30	
Fluoride	mg/L	ND	0.050	10/20/23 00:30	
Sulfate	mg/L	ND	1.0	10/20/23 00:30	

LABORATORY CONTROL SAMPLE.	4603947	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	100	102	102	90-110	
Fluoride	mg/L	5	5.2	104	90-110	
Sulfate	mg/L	100	102	102	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 4803	948		4803949							
		10672461001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.9	100	100	106	106	104	104	90-110	0	20	
Fluoride	mg/L	0.072	5	5	5.4	5.4	106	106	90-110	0	20	
Sulfate	mg/L	1370	1000	1000	2380	2370	101	100	90-110	1	20	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 4803	950		4803951							
			MS	MSD								
		10672461002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.4	100	100	106	103	104	102	90-110	2	20	
Fluoride	mg/L	0.060	5	5	5.4	5.3	106	104	90-110	2	20	
Sulfate	mg/L	825	500	500	1330	1320	100	99	90-110	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

QC Batch: 913958 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions WW 28 Day DU

Laboratory: Pace Analytical Services - Duluth, MN

Associated Lab Samples: 10672461003

METHOD BLANK: 4809411 Matrix: Water

Associated Lab Samples: 10672461003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 10/24/23 18:11

LABORATORY CONTROL SAMPLE: 4809412

Spike LCS LCS % Rec Result Conc. % Rec Limits Qualifiers Parameter Units Sulfate 100 104 104 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4809413 4809414

MS MSD

10673405001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Result Conc. % Rec Limits Qual 20 Sulfate mg/L 40.5 100 100 149 147 109 107 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4809415 4809416

MS MSD 10673405002 MS MSD MS MSD Spike Spike % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 2.8 100 100 112 113 109 110 20 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(218) 727-6380



#### **QUALITY CONTROL DATA**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

QC Batch: 912544 Analysis Method: SM 4500-H+B-2011

QC Batch Method: SM 4500-H+B-2011 Analysis Description: 4500H+B pH, WW DU

Laboratory: Pace Analytical Services - Duluth, MN

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

LABORATORY CONTROL SAMPLE: 4802317

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers pH at 25 Degrees C Std. Units 7.0 100 98-102 H6

SAMPLE DUPLICATE: 4802318

Date: 10/31/2023 03:45 PM

 Parameter
 Units
 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.9
 6.9
 1
 10 H6



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

QC Batch: 913279
QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7
Analysis Description: 200.7 MET

triarysis bescription. 200.7 WE

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

METHOD BLANK: 4806452 Matrix: Water

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Calcium mg/L ND 0.50 10/24/23 12:02

LABORATORY CONTROL SAMPLE: 4806453

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Calcium 20 19.2 96 85-115 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4806454 4806455

MS MSD

10672034001 Spike Spike MS MSD MS MSD % Rec Max Units Result Result **RPD** RPD Parameter Result Conc. Conc. % Rec % Rec Limits Qual 20 Calcium mg/L 3310 ug/L 20 20 23.0 22.5 98 70-130 2

MATRIX SPIKE SAMPLE: 4806456

Date: 10/31/2023 03:45 PM

MS MS 10672460005 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 19.2 Calcium 20 37.7 92 70-130 mg/L



Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

QC Batch: 913280 Analysis Method:
QC Batch Method: EPA 200.8 Analysis Description:

Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Minneapolis

EPA 200.8

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

METHOD BLANK: 4806457 Matrix: Water

Associated Lab Samples: 10672461001, 10672461002, 10672461003, 10672461004, 10672461005, 10672461006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Boron ug/L ND 10.0 10/26/23 16:40

LABORATORY CONTROL SAMPLE: 4806458

Spike LCS LCS % Rec Conc. Limits Qualifiers Parameter Units Result % Rec Boron 100 112 112 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4806459 4806460

MS MSD

10672461001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result **RPD** RPD Qual Result Conc. Result % Rec % Rec Limits Boron ug/L 84.9 100 100 190 197 106 112 70-130 3 20



#### **QUALIFIERS**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 10/31/2023 03:45 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 6385CC Gen Waste CCR Oct 2023

Pace Project No.: 10672461

Date: 10/31/2023 03:45 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
0672461001		SM 2540C-2015	912850		
0672461002	MW8	SM 2540C-2015	912850		
0672461003	MW9	SM 2540C-2015	912850		
0672461004	MW10	SM 2540C-2015	912850		
0672461005	Field Duplicate	SM 2540C-2015	912850		
0672461006	Field Blank	SM 2540C-2015	912850		
0672461001	MW7	EPA 300.0	912928		
0672461002	MW8	EPA 300.0	912928		
0672461003	MW9	EPA 300.0	912928		
0672461003	MW9	EPA 300.0	913958		
0672461004	MW10	EPA 300.0	912928		
0672461005	Field Duplicate	EPA 300.0	912928		
0672461006	Field Blank	EPA 300.0	912928		
0672461001	MW7	SM 4500-H+B-2011	912544		
0672461002	MW8	SM 4500-H+B-2011	912544		
0672461003	MW9	SM 4500-H+B-2011	912544		
0672461004	MW10	SM 4500-H+B-2011	912544		
0672461005	Field Duplicate	SM 4500-H+B-2011	912544		
0672461006	Field Blank	SM 4500-H+B-2011	912544		
0672461001	MW7	EPA 200.7	913279	EPA 200.7	913738
0672461002	MW8	EPA 200.7	913279	EPA 200.7	913738
0672461003	MW9	EPA 200.7	913279	EPA 200.7	913738
0672461004	MW10	EPA 200.7	913279	EPA 200.7	913738
0672461005	Field Duplicate	EPA 200.7	913279	EPA 200.7	913738
0672461006	Field Blank	EPA 200.7	913279	EPA 200.7	913738
0672461001	MW7	EPA 200.8	913280	EPA 200.8	913886
0672461002	MW8	EPA 200.8	913280	EPA 200.8	913886
0672461003	MW9	EPA 200.8	913280	EPA 200.8	913886
0672461004	MW10	EPA 200.8	913280	EPA 200.8	913886
0672461005	Field Duplicate	EPA 200.8	913280	EPA 200.8	913886
0672461006	Field Blank	EPA 200.8	913280	EPA 200.8	913886

# NTS

526 CHESTNUT STREET

**CHAIN 0** 

W0#:10672461 PM: NMJ

CLIENT: DU-NTS-SCOTT

REQUIRED TURN-AROUND TIME: 2 Weeks fr VIRGINIA, MN 55792 (218) 741-4290 Fax: (218) 741-4291

CLIENT NAME,ADDRESS,PHONE#			REPORT TO:				ГҮР	E & :	# CON	ITAIN	NERS SPECIAL INSTRUCTIONS:
DEMOLITION & I	TE and RECYLING L NDUSTRIAL LANDF JNTY, MINNESOTA		SCOTTS	EELEY & KARIS	SSA VOSEN	1	_	6	GENERAL CHEMISTRY (H2SO4)	(3)	SEE ATTACHED LIST WITH METHODS
SAMPLER: Corey Andrews	5 Josh Pe	terson	PERMIT REQ.:	SW-620-002			C M.	CHEN	L CHE	VED N	
PROJECT: GENERAL WASTE DISP				Oct-23			×	ERAL	TOT	SSOL	
PROJECT NUMBER: 6385CC	CCR Monitoirng			ECTION:	MATRIX	filtered		GEN	GE	ō	
LOG-IN#.	SAMPLE#	DESCRIPTION:	DATE:	TIME:	LIQ. SC	L.			-		REQUIRED ANALYSIS:
	MW7	GW WELL	10/16/23	1140	X	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW8	GW WELL		1223	×	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW9	GW WELL		1059	х	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW10	GW WELL		1143	х	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Duplicate	GW WELL		1100	х	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Blank	Field Blank	1	1056	x	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
RELINQUISHED BY: RELINQUISHED TO NTS SAMPLE L	LOCK-UP BY:	DATE: 0[6[23 TIME: 1525 DATE: TIME:	RECEIVED FROM		OCKUP BY:					DATE TIME DATE TIME	TE: 10/14/23 TE: 15:23 TE:
DATE: 10/13/15	TIME: 16:30	/Pag	4.7	. 4.4°C							

# GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C

DC# Title: ENV-FRM-MIN4-0150 v06 Sample Condition Upon Receipt (SCUR) Effective Date: 6/3/2022 WO#: 10672461 Client Name: Project #: Sample Condition **Upon Receipt** Courier: FedEx UPS USPS Client ☐ Pace ☐ SpeeDee ☐ Commercial ☐ See Exceptions ENV-FRM-MIN4-0142 Tracking Number: Custody Seal on Cooler/Box Present? Yes No Seals Intact? Yes No Biological Tissue Frozen? Yes No None Temp Blank? Yes Packing Material: Bubble Wrap ☐ Bubble Bags ☐ Other П No Thermometer: T1 (0461) ☐ T2 (1336) ☐ T3 (0459) Type of Ice: Wet Blue Dry ☐ None ☐ T4 (0254) T5 (0178) 01339252/1710 ☐ Melted ☐ Yes ☑ No Did Samples Originate in West Virginia? Were All Container Temps Taken? Yes □ No □ N/A Temp should be above freezing to 6 °C Cooler temp Read w/Temp Blank: Average Corrected Temp (no temp blank only): Correction Factor: 10. 5 Cooler Temp Corrected w/temp blank: See Exceptions ENV-FRM-MIN4-0142 ☐ 1 Container USDA Regulated Soil: N/A, water sample/other: BM10/11/23 Date/Initials of Person Examining Contents: Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, Did samples originate from a foreign source (internationally, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No including Hawaii and Puerto Rico)? ☐ Yes ☐ No If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and include with SCUR/COC paperwork. COMMENTS Chain of Custody Present and Filled Out? Yes ] No Chain of Custody Relinquished? Yes ] No 2. Sampler Name and/or Signature on COC? Yes □ N/A ] No Samples Arrived within Hold Time? Yes ☐ No Short Hold Time Analysis (<72 hr)? Yes No ☐ Fecal Coliform ☐ HPC ☐ Total Coliform/E.coli ☐ BOD/cBOD ☐ Hex Chrom ☐ Turbidity ☐ Nitrate ☐ Nitrite ☐ Orthophos ☐ Other No Rush Turn Around Time Requested? ☐ Yes 6. Sufficient Sample Volume? Yes ] No Correct Containers Used? Yes ] No ☐ N/A Yes No -Pace Containers Used? Yes Containers Intact? No N/A Field Filtered Volume Received for Dissolved Tests? 10. Is sediment visible in the dissolved container? Yes No Yes Is sufficient information available to reconcile the samples to the Yes ] No 11. If no, write ID/Date/Time of container below: COC? See Exceptions Matrix: Water Soil Oil ENV-FRM-MIN4-0142 All containers needing acid/base preservation have been ☐ Yes □ No N/A 12. Sample # All containers needing preservation are found to be in compliance Yes □ No ☐ NaOH ☐ HNO3 with EPA recommendation? ☐ H2SO4 ☐ Zinc Acetate (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 Yes ☐ No N/A Positive for Residual ☐ Yes ☐ See Exceptions (water) and Dioxins/PFAS Chlorine? ☐ No ENV-FRM-MIN4-0142 (*If adding preservative to a container, it must be added to pH Paper Lot # associated field and equipment blanks--verify with PM first.) Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip Headspace in Methyl Mercury Container? ☐ Yes ☐ No J N/A 13. Extra labels present on soil VOA or WIDRO containers? Yes ☐ No N/A 14. ☐ See Exceptions □ No Headspace in VOA Vials (greater than 6mm)? ☐ Yes N/A ENV-FRM-MIN4-0142 3 Trip Blanks Present? ☐ No N/A 15. ☐ Yes ☐ Yes ☐ No Trip Blank Custody Seals Present? N/A Pace Trip Blank Lot # (if purchased):

Comments/Resolution:

Project Manager Review: Nikki Staton Date: 10/18/23

Date/Time:

NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers).

CLIENT NOTIFICATION/RESOLUTION

Person Contacted:

Field Data Required? Yes

# Intra-Regional Chain of Custody

Workorder Name: 6385CC Gen Waste CCR Oct 2023 Workorder: 10672461

Owner Received Date: 10/16/2023

**Due Date: 10/31/2023** 

Face Analytical "www.pacelabs.com

Section 2	and the second s																「	93
Pa	Pace Analytical Virginia		Pace Anal	Minnesor	la													57
37. Vir	315 Chestnut Street Virginia, MN 55792		1700 Elm Street Minneapolis. MN	Street is. MN 55414												: <u>-13-4-1</u> N: 13		
<u> </u>	Phone (218) 336-2110		Phone (61	Phone (612)607-1700											i den			
									20 CT		ugo Elektrica		ger de					
<b>8</b> ₹	Report To: Nikki Staton							.005.A¶	3.005 A-T		Z.	rije r s						
									3		18 28 27 21   186					<u> </u>		
						Ŋęĸ												
						18						¥ 38 4 48		9.4%	ligit (* Militia)		LAB USE ONLY	
۲-	MW7	PS 1	10/16/2023 11:40 10672461001	10672461001	Water	_		×	×									,
2	MW8	PS 1	10/16/2023 12:23 10672461002	10672461002	Water	-		×	×									
က	MW9	PS 1	10/16/2023 10:59	10672461003	Water	_		×	×									
4	MW10	PS 1	10/16/2023 11:43	10672461004	Water	_		×	×	<u> </u>						Ļ		
5	Field Duplicate	PS 1	10/16/2023 11:00	10672461005	Water	_		×	×						-	ig		
9	Field Blank	PS 1	10/16/2023 10:56 10672461006	10672461006	Water	_		×	×	_					+			<del>-,</del> -
						-					* 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1				-			2,00
Tran	Transfers Released By		Date/Time	Received By	<b>,</b>		Date/Time	lime			and the same of th							10
-	101 -00	62/81/01	グルトー	1		1/01	chape c	080										
7	Mary 11	53/19/01	23 1055	11.11	1/00//	10/10	12	910										
3																		
4										•	٠							
ပိ	Cooler Temperature on Receipt 0.5 °C	6.5 %		Custody Seal Y	or (N)		Received on Ice	lo lo	(V) or	2		L	Sam	Samples Intact	40640	16	2	
					1					ı			2	252	וומנו		N 10	

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document

This chain of custody is considered complete as is since this information is available in the owner laboratory.

DC# Title: ENV-FRM-MIN4-0150 v13_Sample Condition Upon Receipt (SCUR)

Effective Date: 4/14/2023 Client Name: Project #: Sample Condition **Upon Receipt** Pace Virginio 10672461 FedEx UPS USPS Client Pace SpeeDee Commercial See Exceptions Tracking Number: ENV-FRM-MIN4-0142 Biological Tissue Frozen? Yes No N/A Custody Seal on Cooler/Box Present? Yes No Seals Intact? Yes No Temp Blank? Yes No Packing Material: Bubble Wrap Bubble Bags None Thermometer: T1 (0461) T2 (0436) T3 (0459) T4 (0402) T5 (0178) Type of Ice: Wet Blue Dry None T6 (0235) 🖊 T7 (0042) 🔲 T8 (0775) 🦳 T9(0727) 🔲 01339252/1710 Melted Did Samples Originate in West Virginia? Yes **/** No Were All Container Temps Taken? **Average Corrected Temp** Temp should be above freezing to 6 °C Cooler temp Read w/Temp Blank: (no temp blank only): See Exceptions ENV-FRM-MIN4-0142 Cooler Temp Corrected w/temp blank: _0 . 5 °C 1 Container **Correction Factor:** 10-20-23 USDA Regulated Soil: ( N/A, water sample/other: Date/Initials of Person Examining Contents: A54 Did samples originate from a foreign source (internationally, Did samples originate in a quarantine zone within the United States: AL, AR, AZ CA, FL, including Hawaii and Puerto Rico)? GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No Yes No If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and include with SCUR/COC paperwork. Minneapolis COMMENTS Location (Check one): Duluth Virginia Chain of Custody Present and Filled Out? / Yes No Chain of Custody Relinquished? No Yes Sampler Name and/or Signature on COC? Yes / No N/A Yes Samples Arrived within Hold Time? No 4. If fecal: <8 hrs >8 hr, <24 Fecal Coliform HPC Total Coliform/E.coli Short Hold Time Analysis (<72 hr)? BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other Rush Turn Around Time Requested? Sufficient Sample Volume? Yes Correct Containers Used? Yes No N/A -Pace Containers Used? Yes No Yes No Containers Intact? No Field Filtered Volume Received for Dissolved Tests? Yes 10. Is sediment visible in the dissolved container? Is sufficient information available to reconcile the samples to the Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 Matrix: Water Soil Oil Other No N/A 12. Sample # 80/ -006: All containers needing acid/base preservation have been 'n **/** Yes No ☐ N/A **I** HNO3 All containers needing preservation are found to be in NaOH H2SO4 Zinc Acetate compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 Yes Positive for Residual See Exceptions Yes Chlorine? No ENV-FRM-MIN4-0142 (water) and Dioxins/PFAS pH Paper Lot # (*If adding preservative to a container, it must be added to Residual Chlorine 0-6 Strip O-14 Strip associated field and equipment blanks--verify with PM first.) Headspace in Methyl Mercury Container? Yes No / N/A 13. Extra labels present on soil VOA or WIDRO containers? Yes No N/A 14. See Exceptions Headspace in VOA Vials (greater than 6mm)? Yes No N/A ENV-FRM-MIN4-0142 3 Trip Blanks Present? Yes No N/A 15. Trip Blank Custody Seals Present? Yes No Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes Person Contacted: Date/Time: Comments/Resolution: 10/23/23 Project Manager Review:

NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers). Labeled By:

Pace® Analytical Services, LLC

#### NTS

# **Laboratory Report Review Checklist**

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290 6385CC_2023 (Fall) 1016(CA) Printed: 11/14/2023 8:37:22 AM Environmental Science & Engineering

**Report:** 10672461

	ples not Collected by NTS:		Lab:		Revised Lab	Report:	
Revi	ewer #1:	Date:	Reviewer #2:	Date:	Invoice Re	viewed:	
Carr	ie Jensen	11/14/2023					
SAN	IPLE HANDLING AND PRESER\	/ATION			Yes:	No:	N/A:
			vith the final report and	field parameters (if included) are	€ 🗸		
	ectly reported by the laborato mple condition upon receipt f		ed with the final report		<b>✓</b>		
	ples were received by the labor		-	n ice and/or in correct container			
	ples were received and analyz	ed by the labora	atory within method red	uired holding times		<b>✓</b>	
Any	results associated with incorre	ort 🗸					
Comments	pH was initiated outside of the	e EPA required I	holding time of 15 minu	tes.			
CAL	IBRATION				Yes:	No:	N/A:
The	report narrative or data qualif	iers indicate the	ere were calibration fail	ures for any of the required analy	/ses	<b>V</b>	
Comments							
ME	THOD BLANKS				Yes:	No:	N/A:
A m	ethod blank was analyzed for	• •	nalytical methods		<b>✓</b>		N/A:
A m	ethod blank was analyzed for a nethod blanks are free of targ	et analytes		lytes were qualified in the		No:	N/A:
A m	ethod blank was analyzed for	et analytes		lytes were qualified in the	<b>✓</b>		N/A:
A m	ethod blank was analyzed for nethod blanks are free of targo If any analytes were detected	et analytes		lytes were qualified in the	<b>✓</b>		
Comments u IIV	ethod blank was analyzed for a nethod blanks are free of targo If any analytes were detected associated samples	et analytes d in the method		lytes were qualified in the			□ ✓
Comments Comments	ethod blank was analyzed for a method blanks are free of targo If any analytes were detected associated samples  ORATORY CONTROL SAMPLES pratory control limits are listed	et analytes d in the method  G (LCS) d on the report a	blank, the detected ana	nen compared to the suggested	Yes:		
A m All r Comments	ethod blank was analyzed for a method blanks are free of targo If any analytes were detected associated samples  ORATORY CONTROL SAMPLES pratory control limits are listed delines in the MPCA Laboratory	et analytes d in the method  (LCS) d on the report a y Quality Contro	blank, the detected ana and seem reasonable whal and Data Policy (p-eao	nen compared to the suggested 2-09a)	Yes:	No:	□ ✓
A m All r	ethod blank was analyzed for a method blanks are free of targo If any analytes were detected associated samples  ORATORY CONTROL SAMPLES pratory control limits are listed delines in the MPCA Laboratory	et analytes d in the method  (LCS) d on the report a y Quality Contro d for each analyt	and seem reasonable whal and Data Policy (p-eao	nen compared to the suggested 2-09a) ns all target analytes being repor	Yes:	No:	□ ✓
A m All r	ethod blank was analyzed for a method blanks are free of targe If any analytes were detected associated samples  ORATORY CONTROL SAMPLES  Oratory control limits are listed lelines in the MPCA Laboratory  CS was prepared and analyzed percent recovery of all target	et analytes d in the method  (ICS) d on the report a y Quality Contro d for each analyt analytes are wit	and seem reasonable whol and Data Policy (p-eaotical method and contain	nen compared to the suggested 2-09a) ns all target analytes being repor	Yes:	No:	□ ✓

MATRIX SPIKES/MATRIX SPIKE DUPLICATES (MS/MSD)	Yes:	No:	N/A:
An MS/MSD was prepared and analyzed for each applicable analytical method and contains all target analytes being reported	<b>✓</b>		
If no, was an alternate spiked sample processed instead (such as an LCS duplicate)			<b>✓</b>
Laboratory control limits are listed on the report and seem reasonable when compared to the suggested	<b>✓</b>		П
guidelines in the MPCA Laboratory Quality Control and Data Policy (p-eao2-09a)			
The percent recovery of all target analytes are within laboratory control limits	<b>~</b>		
The relative percent difference (RPD) is within laboratory control limits for all target analytes	<b>✓</b>		
If any analytes had a percent recovery or RPD outside of laboratory control limits, qualifiers were added to the parent sample			<b>✓</b>
Co the parent sample			
LABORATORY DUPLICATES	Yes:	No:	N/A:
A laboratory duplicate was prepared and analyzed for each applicable analytical method	<b>✓</b>		
The RPD for the duplicate pair is within laboratory control limits	<b>✓</b>		
If any analytes had an RPD outside of laboratory control limits, qualifiers were added to the parent sample			<b>~</b>
Comments			
SURROGATES	Yes:	No:	N/A:
Laboratory control limits are listed on the report and seem reasonable when compared to the suggested			<b>✓</b>
guidelines in the MPCA Laboratory Quality Control and Data Policy (p-eao2-09a)			
The percent recovery of all surrogate compounds are within laboratory control limits			<b>✓</b>
If any surrogate had a percent recovery outside of laboratory control limits, qualifiers were added to the surrogate compound			<b>V</b>
Comments			
FIELD DUPLICATES	Yes:	No:	N/A:
A field duplicate was required for this project	<b>V</b>		
The RPD for the duplicate pair is within NTS control limits (20%)	<b>✓</b>		
If any analytes had an RPD outside of NTS control limits, qualifiers were added to the parent sample			✓
Field Duplicate taken at MW9.  Manually calculated Duplicate and MW9 results, and all were within control limits.			
FIELD, EQUIPMENT, TRIP BLANKS	Yes:	No:	N/A:
A field, equipment, and/or trip blank was required for this project	<b>✓</b>		
The blank is free of target analytes	<b>✓</b>		
If any analytes were detected in the blank, were the detected analytes qualified in the associated samples			✓
Field Blank analyzed for this project.			

ADI	DITIONAL CHECKS	Yes:	No:	N/A:
All	lata within this report (including subcontracted analyses) have been uploaded to the NTS database and			
cori	ectly reflect the results reported by the laboratory	✓		
Ana	lysis to the method detection limit (MDL) was required for this laboratory report		<b>✓</b>	
	If analysis to the MDL was required, data was appropriately qualified with J flags			<b>✓</b>
Nor	-detects are not reported off dilutions or dilution factors are typical of past events		<b>✓</b>	
Diss	olved, speciated, or fractional results are less than (or exceed by no more than 20%) total results			<b>✓</b>
All I	ab results were evaluated against the associated permit limits or appear typical of past monitoring events	<b>✓</b>		
All I	ab calculations are accurate against NTS calculations	<b>✓</b>		
in.	*Boron at MW9, MW10, and Field Duplicate were diluted with a ND result due to high levels of non-target	analytes	or other	matrix
ents	interference, which resulted in an elevated RL that is higher than past events(with the exception of MW9).	No limits	associa	ted with
E	boron.			
8	*Boron at MW7 is slightly higher than past events. No limits.			

#### **DEFINITIONS**

COC = chain of custody

LCS/LCSD = laboratory control sample/laboratory control sample duplicate

MDL = method detection limit

MPCA = Minnesota Pollution Control Agency

MS/MSD = matrix spike/matrix spike duplicate

RPD = relative percent difference

#### **Definitions**

GW = groundwater, SOPs = standard operating procedures

#### **NTS**

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

## **Field Report Cover Sheet**

6385CC_2023 (Fall) 1016(CA)

Printed: 11/3/2023 12:25:48 PM



Client:

General Waste Disposal & Recovery

NTS Project: NTS Project Manager:

6385CC - CCR Monitoring and Reporting Scott Seeley

NTS Field Personnel: Field Date:

Corey Andrews 10/16/2023

#### **Summary of Services Performed:**

Prepped and departed for Gen. Waste to conduct Fall CCR groundwater monitoring. Sampled wells MW-7, MW-8, MW-9, and MW-10 via low flow stabilization method. Lower than normal SpC readings were observed at MW-8, MW-9, and MW-10. Hydrolab post checked within NTS specifications. F.B. And Dup were obtained at MW-9. Samples were ceded to PACE Analytical in Virginia, MN. For additional details see field notes and COC.

Groundwater

Observation Time: 11:43 Collection Time: 11:43

DATA	/ ·/ \	
11414		

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)	
Conductance, Specific (μS/cm)	787.9	Elevation, Groundwater (ft)	1442.44
ORP vs NHE (mV)	176	Static Water Level (ft)	10.18
Oxygen, Dissolved (mg/L)	0.87		
pH (SU)	6.97		
Temperature (°C)	9.83		
Turbidity (NTU)	2.1		

#### STABILIZATION OR PURGE DATA

Purging Strategy: Low-Flow Stabilization		n	Pump Rate: 0.33 gpm Well Volume Interva		3 4 / min		
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
11:35	6.99	0.80	782.8	3.9	182	9.86	11.04
11:39	6.98	0.83	782.6	2.8	178	9.84	11.04
11:43	6.97	0.87	787.9	2.1	176	9.83	11.04
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0.1, Criteria=+\-0.2	Pass SCond: Range=1%, Criteria=<5%	Pass Turb: MaxValue=4, Criteria= <5	Pass ORP: Range=6, Criteria=+\-20	Pass Temp: Range=0, Criteria=+\-0.2	

# ROUTINE OBSERVATION(S)

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present:	Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked:	Yes	Color, Purge:	Colorless	Appearance, Sample:	Clear
Cloud Cover:	Overcast			Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Airborne Particulate:	None			Odor Intensity, Purge:	None	Odor, Sample:	None
Precipitation:	None			Odor, Purge:	None	Sampling Equipment:	Submersible Pump

# **ROUTINE MEASUREMENT(S)**

PURGE INFO	MEASURED VALUE	CALCULATED VALUE	INITIAL LOGGER INFO
Pump Rate(gpm): 0.33	Measured Well 18.2 Depth(ft):	Water Column(ft): 8.02	Time of Initial SWL 11:28  Measurement(HH:MM):
Pump Start 11:31 Time(HH:MM):	Static Water Level(ft): 10.18	Well Volume(gal): 1.31	
Pump End 11:47 Time(HH:MM):		Volume Purged(gal): 5.28	
Pump Duration(min): 16.00		Well Volume 3.97 Interval(min):	

## STATIC INFORMATION

6385CC_2023 (Fall) 1016(CA) Page 2 of 19

# MW10 (cont'd)

Groundwater

	lΤ	_		16	- ^	
•		-	ıιν		-1	1

MDH 847087

Number:

Key 2121 Number:

STATIC MEASUREMENT(S)

#### SITE INFO

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1452.62

6385CC_2023 (Fall) 1016(CA) Page 3 of 19

Groundwater

Observation Time: 11:40 Collection Time: 11:40

D 4 7	_ ^	~~		$\sim$	
DA		/ / \			
IJA	_	,			I F I J

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)	
Conductance, Specific (µS/cm)	2719	Elevation, Groundwater (ft)	1472.98
ORP vs NHE (mV)	475	Static Water Level (ft)	23.15
Oxygen, Dissolved (mg/L)	0.62		
pH (SU)	6.20		
Temperature (°C)	9.02		
Turbidity (NTU)	361.0		

#### STABILIZATION OR PURGE DATA

Purging Strategy: LOW-F	10.00 STADIII/ATIOO		te: 0.1 gpm		Well Volume Interval: 5.7 min		
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
11:16	6.22	0.59	2697	1035	468	9.3	23.85
11:22	6.16	0.55	2723	907	472	9.04	24.15
11:28	6.16	0.61	2723	369.2	475	8.96	24.3
11:34	6.15	0.60	2726	365.1	475	9.06	24.35
11:40	6.20	0.62	2719	361.0	475	9.02	24.39
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0, Criteria=+\-0.2	SCond: Range=0%,	Turb: MaxValue=369,	Pass ORP: Range=0, Criteria=+\-20	Temp: Range=0.1,	

# **ROUTINE OBSERVATION(S)**

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present:	Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Light Brown
Wind Speed:	Calm	Well Locked:	Yes	Color, Purge:	Light Brown	Appearance, Sample:	Turbid
Cloud Cover:	Overcast			Appearance, Purge:	Fine Particulate	Odor Intensity, Sample:	None
Airborne Particulate:	None			Odor Intensity, Purge:	None	Odor, Sample:	None
Precipitation:	None			Odor, Purge:	None	Sampling Equipment:	Submersible Pump

# **ROUTINE MEASUREMENT(S)**

PURGE INFO MEASURED VALUE CALCULATED VALUE INITIAL LOGGER INFO

6385CC_2023 (Fall) 1016(CA) Page 4 of 19

# MW7 (cont'd)

#### Groundwater

			0.00.			
Pump Rate(gpm):	0.1	Measured Well	26.65	Water Column(ft):	3.5	Time of Initial SWL 11:15
		Depth(ft):				Measurement(HH:MM):
Pump Start	11:16	Static Water Level(ft):	23.15	Well Volume(gal):	0.57	
Time(HH:MM):						
Pump End	11:45			Volume Purged(gal):	2.9	
Time(HH:MM):						
Pump Duration(min):	29.00			Well Volume	5.7	
				Interval(min):		

## STATIC INFORMATION

#### SITE INFO

MDH 817979 Number: Key 2106

Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1496.13

6385CC_2023 (Fall) 1016(CA) Page 5 of 19

Groundwater

Observation Time: 11:58 Collection Time: 12:23

DATA	COII	FC	LED.
חות	COL		LLL

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)	
Conductance, Specific (μS/cm)	1108	Elevation, Groundwater (ft)	1460.25
ORP vs NHE (mV)	282	Static Water Level (ft)	34.16
Oxygen, Dissolved (mg/L)	2.67		
pH (SU)	6.38		
Temperature (°C)	8.15		
Turbidity (NTU)	21.7		

## STABILIZATION OR PURGE DATA

Purging Strategy: LOW-F	inw staniiization		- TOW-FIOW STANIIIZATION U. 15 90M / 67 MIN		5 gnm / 6/min			
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):	
11:59	6.33	2.46	1011	22.5	284	8.37	34.75	
12:07	6.36	2.58	1099	22.2	281	8.30	34.75	
12:15	6.36	2.61	1125	22.2	281	8.25	34.75	
12:23	6.38	2.67	1108	21.7	282	8.15	34.75	
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0.1, Criteria=+\-0.2	Pass SCond: Range=2%, Criteria=<5%	Pass Turb: MaxValue=22, Criteria= <5 Turb: Range=1%, Criteria=<10%	Pass ORP: Range=1, Criteria=+\-20	Pass Temp: Range=0.2, Criteria=+\-0.2		

# **ROUTINE OBSERVATION(S)**

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present:	Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked:	Yes	Color, Purge:	Colorless	Appearance, Sample:	Clear
Cloud Cover:	Overcast			Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Airborne Particulate:	None			Odor Intensity, Purge:	None	Odor, Sample:	None
Precipitation:	None			Odor, Purge:	None	Sampling Equipment:	Bladder Pump

# **ROUTINE MEASUREMENT(S)**

PURGE INFO	MEASURED VALUE	CALCULATED VALUE	INITIAL LOGGER INFO
Pump Rate(gpm): 0.15	Measured Well 41.22 Depth(ft):	Water Column(ft): 7.06	Time of Initial SWL 09:45 Measurement(HH:MM):
Pump Start 10:00 Time(HH:MM):	Static Water Level(ft): 34.16	Well Volume(gal): 1.15	
Pump End 12:30 Time(HH:MM):		Volume Purged(gal): 22.5	
Pump Duration(min): 150		Well Volume 7.67 Interval(min):	_

6385CC_2023 (Fall) 1016(CA) Page 6 of 19

# MW8 (cont'd)

Groundwater

## STATIC INFORMATION

#### SITE INFO

MDH 817978

Number:

Key 2106

Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Drilled Well Depth(ft): 41.2

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1494.41

6385CC_2023 (Fall) 1016(CA) Page 7 of 19

Groundwater

Observation Time: 10:55 Collection Time: 10:59

	$\sim$		
DATA	( ( )	1 <b>-</b> (	1 <b>–</b> 1 )
			1 I <i>I J</i>

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)		
Conductance, Specific (μS/cm)	844.4	Elevation, Groundwater (ft)	1442.87	
ORP vs NHE (mV)	119	Static Water Level (ft)	11.85	
Oxygen, Dissolved (mg/L)	0.33			
pH (SU)	6.56			
Temperature (°C)	7.96			
Turbidity (NTU)	1.0			

#### STABILIZATION OR PURGE DATA

Purging LOW-F	low Stabilizatio	n Pun Rat	· II KK GNM	Well Volun Interv	¹ ⊀ ⊿x min		
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
10:51	6.54	0.32	882.1	1.7	132	8.00	12.04
10:55	6.57	0.32	859.1	1.9	125	8.01	12.04
10:59	6.56	0.33	844.4	1.0	119	7.96	12.04
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0, Criteria=+\-0.2	Pass SCond: Range=4%, Criteria=<5%	Pass Turb: MaxValue=2, Criteria= <5	ORP: Range=13,	Pass Temp: Range=0, Criteria=+\-0.2	

# ROUTINE OBSERVATION(S)

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present:	Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked:	Yes	Color, Purge:	Colorless	Appearance, Sample:	Clear
Cloud Cover:	Overcast			Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Airborne Particulate:	None			Odor Intensity, Purge:	None	Odor, Sample:	None
Precipitation:	None			Odor, Purge:	None	Sampling Equipment:	Submersible Pump

# **ROUTINE MEASUREMENT(S)**

PURGE INFO	MEASURED VALUE	CALCULATED VALUE	INITIAL LOGGER INFO
Pump Rate(gpm): 0.33	Measured Well 18.9 Depth(ft):	Water Column(ft): 7.05	Time of Initial SWL 10:40 Measurement(HH:MM):
Pump Start 10:47 Time(HH:MM):	Static Water Level(ft): 11.85	Well Volume(gal): 1.15	
Pump End 11:07 Time(HH:MM):		Volume Purged(gal): 6.6	
Pump Duration(min): 20.00		Well Volume 3.48 Interval(min):	

## STATIC INFORMATION

6385CC_2023 (Fall) 1016(CA) Page 8 of 19

# MW9 (cont'd)

Groundwater

#### SITE INFO

MDH 817980

Number:

Key 0410 Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Drilled Well Depth(ft): 18.9

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1454.72

6385CC_2023 (Fall) 1016(CA) Page 9 of 19

# **Calibration Log**

Staff: Corey Andrews Date: 10/16/2023 Status: pass

**Comments:** 

Sonde:	EQ-08C	PreCal	PostCal	PostEvent	
Last Temp Check:	9/1/2023	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Spec.:	<50 +/-0.1 °C	8:05	8:10	15:35	Specifications:
	SpC-0 (Air):	2.6	0.0	0.0	Sum of
Sta	ndard (μS/cm):	0	0	0	<100000 +/-1 μS/cm
Tei	mperature (°C):	20.8	20.8	22.6	AND
					+/-0.5%
SpC-100	00 (4303F04-1):	1010	1000	995	Sum of
Sta	ndard (μS/cm):	1000	1000	1000	<100000 +/-1 μS/cm
Tei	mperature (°C):	20.83	20.83	21.22	AND
					+/-0.5%
ORP-Z	obell (3130-4):	433	442	438	<999 +/-20 mV
	Standard (mV):	442	442	439.2	<999 +/-20 MV
Tei	mperature (°C):	20.4	20.4	21.5	
DO (100	0% Saturation):	8.58	8.55	8.55	20 1 / 0.1 mg/l
100% Oxy	gen Saturation:	8.61	8.61	8.59	<8 +/-0.1 mg/L >=8 AND <20 +/-0.2 mg/L
Tei	mperature (°C):	20.5	20.5	20.5	>=20 AND <60 +/-10%
Barometric Pre	ssure (mmHg):	728	728	726	
pH-	-4 (1302D44-2):	4.09	4.00	3.98	-14 - / 0.2 SU
	Standard (SU):	4.00	4.00	4.00	<14 +/-0.2 SU
Tei	mperature (°C):	20.5	20.5	21.15	
p	H-7 (4212E87):	7.14	7.02	7.01	44./02611
	Standard (SU):	7.02	7.02	7.0	<14 +/-0.2 SU
Tei	mperature (°C):	19.9	19.9	20.25	
pl	H-10 (430IH81):	10.12	10.05	10.03	44./03611
·	Standard (SU):	10.05	10.05	10	<14 +/-0.2 SU
Tei	mperature (°C):	20.3	20.3	20.78	
Tur	b-0 (DI Water):	0.0	0.0	0.0	400 . [4 NT]
S	tandard (NTU):	0	0	0	<100 +/-1 NTU >=100 AND <400 +/-12 NTU
	mperature (°C):	20.8	20.8	21.71	>=400 AND <3000 +/-150
					NTU

Sonde:	EQ-08C	PreCal	PostCal	PostEvent	
Last Temp Check:	9/1/2023	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Spec.:	<50 +/-0.1 °C	8:05	8:10	15:35	Specifications:
Tur	b-100D (170-1):	104.0	100.0	99.3	<100 +/-1 NTU
S	Standard (NTU):	100	100	100	>=100 AND <400 +/-12 NTU
Te	mperature (°C):	21.15	21.15	21.9	>=400 AND <3000 +/-150
					NTU

# **Vehicle Inspection 1**

GENERAL INFO											
Driver: Corey Andrews		Vehicle: VT	-70   2017 GMC S	IERRA	ERRA Time(HH:MM): 08:25						
Odometer(mi):											
DRIVER/PASSENGER SIDE											
External Side Mirrors (right and left):	X	Windows (clean, free of cracks):  Tires (properly inflated, adequate treatments)				lequate 🗵 tread):					
FRONT/REAR											
Tail Lights: ⊠	Head ⊠ Lights:	Во	Damage to dy/Bumpers:	⊠ Lio	cense Plates (t	_	Fluid Leaks:	×			
Turn ⊠ Signals:		,		'							
ROUTINE MAINTENANCE											
Oil Change ⊠ (current):	Transmission	n Fluid (change ev 60k mi		Air Filter (ch	ange every 30 miles		Gauges Oper				
Spare Tire (present, properly inflated):	X										
INTERIOR											
Cleanliness:	Check Brakes:	⊠	Check 🗵 Horn:	Se	at Belts (work	•	Check Park	king 🗵 ake:			
Rearview 🗵 Win Mirror:	dshield Wipers a Flu	nd 🗵 uid:									
GENERAL/SAFETY											
	Wheel 🗵 Chocks:	First Aid Kit		Operations Manual:	×	Strobe Light (i needed		Buggy Whip (if needed):	×		
DEFICIENCIES CORRECTED											
No Deficiencies Noted:	X										
Comments:											

## **Field Checkout**

#### **EQUIPMENT**

# Resource:Qty:EQ-08F | Hydrolab MS5 Sonde F1.00EQ-16S | Static Water Level S, 100 ft (Skinny Dipper)1.00EQ-17 | Submersible Pump - Generic1.00

## VEHICLE(S)

Resource:	Qty:					
VT-70   2017 GMC SIERRA	74.00					
CONSUMABLES						
Resource:	Qty:					
CF-04   Glove - Nitrile (ea)	6.00					
CE OF     /C   -	2.22					
CF-05   Ice (6 lb bag)	3.00					

S 63	385(C	Gen	Waste .	Fall Gra	I we ter	Moni	toring		10/16/230
	Andrew					1 1		1 1 1 1	+
			Sugres +/c	Suit Dais	t i variabl	0			4
Franco	ment:	1#70 B	ladder -	51	il sula	are like a	vup, Hydre	1.6 74	10-
0715	Acc	we at	NIS	ACCO.	Prep/Ca	libonte /	Jacop, Tryens	aco 7 m	ردم) مو
0830	Dep	part N	75	el lucc.	HED (Co	· ioireic j	Long.		
0917	1 1 1			10-10	11.0	10 6	1.1.1	0	2 1 0
01111	1 1 1	, D	alacan	dasie , o	Brech g	ate ice	1. Unlocke	gare	? showed
8940	) [ [ ]	11-8/11	M 1 1	Samplin	g wells		in tal		
0740		W. 0.1 W	eu locke	2. 3. in.	good cond	tour. Rei	12121, Oniq	le well For	1817 978
	54	L . /	wo	W.C.	Vol	pour	steet.	STOP:	Rate
	100	7 1 1	, , ,	7.06	The state of the s			1240	0.15
1000	Bega	in pump	ing well	via b	ladder ,	imp.	1 1 1		
1009		t well			1 - 1	1 1 1			
1029	mw.	-9. Wel	( locked	1 in 90	od condit	ion key	#ZIZI Unique	well #817	980
	5W4	- 1/4	(1/	WC	Vol(go	1) R.	start	Stop	Rate (6PM
	11-85	5 18	90:	7.05	7.15	1.0	47	1107	0,33
	Line	0.14	LDO	500		1 1 1			SWL After
					1.7	1	8.00	A POSSESSION A	1 1 211 2001
				857.1	1 1	1 1 1	8.01		
	1059			1	1.0:	A 4 1	7.96		
	1 1 1		1 1	1 1 1	· A ·		1100 Dip		
1124	Imin-1	10 Well	i / 1	i and	0 07	6 7.5.	100 000	6 6501	cup (c
1127	SWL:	TwD	(ocked)	1 9	soil condit	ion Key	VZIZI Uniqu	e well #	897087
	-		1						sul Wester
	16:18	1 1		1.51	0, 1	5.5	1147 1	31	10-18'
	-7, me	PH	TOO	SpC	Tail	ORP	7emp :	sul!	
	1135	6.71	0.80	782.8		7		11.04	
	1139	6.98		782.6	2.8	178		1.04	
	1143		0.87	787.9		176	9.83 1	1-04	
	* 5pC	lower +	tion ner	mar 114	3 sample o	blumed.			
1151	MM-8		pourpine				v For ele	aring 5	see above
140	Time	pH:	LDO	Spic	Torb			SWL	SWL NEGE
1	11159	6.33	2.46	1011	22.5	284	8:37	34.75	
-	1207	6.36	2.58	1099	22:2	281	8,30	34-75	
	1215	(e.36	2.61	1125	22.2	281	8.25	34.75	
				1 1 1		1 1	A A A A A A		
-3	1223	6.38	2067	1108	21.7	287	8/5	10.40	
9	1223	6.38	1 1 4 4	1108	21.7	282	8.15	34.75	
		1 1 1	1 1 4 4	* 1	angle obt	1 1	8.15	34.40	
9		1 1 1	1 1 4 4	* 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	8.15	34,70	
9		1 1 1	1 1 4 4	* 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	8.15	34.70	
9		1 1 1	1 1 4 4	* 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	8.15		
9		1 1 1	1 1 4 4	* 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	8.15	34.70	
9		1 1 1	1 1 4 4	* 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	8.15		

1110 -	mu -	7 : :						
	5	h L	Two:	Por Lake		Val	Start	5/00
140	1 2	3,15ft	76.65	6.1		0.57	1116	1145
Je :	P.H.	: 00:	Spl	Tur	SEP.	· Je in	Shi	apparisie
ا طاال	6.21	0.59	2697	(035.0	468	9.3	73.85	Issoin If/s.
1122	6:16:	0.55	2723	907.0	472	9.04	24.15	bound 8/5
112.8	6.16	0.61	2723	369.2	475	8.96	ZY.3	brauntifls.
1134	6:15	0.60	2726	365.1	4:75	9.06	24.35	brown/f/s
1190	6:20:	0.62	2719	361.0	475	9.02	24.39	brown/f/
1140 -	Said (69.	: Brown	1/5					
		1 1 1	1 1 1 1					



# **Daily Tailgate Safety**

Project: $\frac{6}{6}385$ CC	Date: 10 (6/2 3	
Work Site Hazard Assessment Worksheet		
☐ PPE Required (List):	Viz	Level*
☐ Weather Conditions (List):		
Vehicular Traffic	Communications	
☐ Noise	Equipment/Tools	
☐ Housekeeping	Other Site Hazards**	
□I have examined the work place named and fo ☑I have examined the work place named and h taken		rrective action
Hazards Identified/Safety Items Discussed:  Slips Trips, & Fulls  Trucks harding		
Trucks hading		
watch footing  Slay olear of trucks U	Jear high UZ-	
Participants in Safety Discussion:		
1. orey Hadrews	Signature	
2 3.		
3 4		
5.		***************************************
Signature of Site Supervisor/Examiner:	Date:	10/14/23
*Lovel D. C. P. or A		

^{**}Examples: Heavy Equipment, Air Quality, Flammable materials, Wildlife, Work Site Security, Confined Space



#### NTS

526 CHESTNUT STREET

VIRGINIA, MN 55792 (218) 741-4290 Fax: (218) 741-4291

# PAGE 1 OF 1 CHAIN OF CUSTODY RECORD

REQUIRED TURN-AROUND TIME: 2 Weeks from submittal date

CLIENT NAME, ADDRESS, PHONE#:							TYPE & # CONTAINERS				RS		SPECIAL IN	STRUCTIONS:			
GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA			SCOTT SEELEY & KARISSA VOSEN				VOC M. 8260 (HCL)	GENERAL CHEMISTRY (NO PRES)	ETALS (HN03)	DISSOLVED METALS (HN03)		SEE A	ATTACHED LI	ST WITH M	ETHODS		
SAMPLER: Corey And rews	SAMPLER: Corey Andrews; Josh Peterson		PERMIT REQ.: SW-620-002				OC M.	뷠	AL ME	LVED							
PROJECT: GENERAL WASTE DISPO	OSAL and RECYCLIN	IG, LLC.		Oc	t-23			>	ERA FR		SSO						
PROJECT NUMBER: 6385CC	CCR Monitoirng			COLLECTION:	МА	TRIX	filterec		GENERAL (	3	□						
LOG-IN#:	SAMPLE#	DESCRIPTION:	DATE:	, was as managed Til		a. SOL.	新教机					REQU	IRED ANALYSIS:		Production of the section of the sec	an senat en e	3
	MW7	GW WELL	10/16/	23 114	o ×		N		1	1		Boror	ı, Calcium, Chlori	ide, Flouride, pH, Su	lfate & TDS		
	MW8	GW WELL		12.2	.3 ×		N		1	1		Boron	ı, Calcium, Chlori	ide, Flouride, pH, Su	lfate & TDS		
	MW9	GW WELL		105	9 ×		N		1	1		Boron	ı, Calcium, Chlori	ide, Flouride, pH, Su	lfate & TDS	-	
	MW10	GW WELL		ાાપ	.3 ×		N		1	1		Boron	, Calcium, Chlori	de, Flouride, pH, Su	lfate & TDS		
	Field Duplicate	GW WELL		1100	o ×		N		1	1		Boron	, Calcium, Chlori	de, Flouride, pH, Su	lfate & TDS		
	Field Blank	Field Blank		105	6 ×		N		1	1		Boron	, Calcium, Chlori	de, Flouride, pH, Su	Ifate & TDS		
RELINQUISHED BY:		DATE:10[16[23 TIME: 1525	RECEIVED I	BY: LLŽ C	Sho	ند	ث					10/14 157:	2123				
RELINQUISHED TO NTS SAMPLE LOCK-UP BY: DATE:			RECEIVED	FROM NTS SAM	IPLE LOCKU	BY:				D	ATE:		-				
										Ţ	IME:				Maria Pagasa		
RECEIVED FOR LAB BY:			TEMP.AT ARRIVAL:						06.7 20.4 20.4								
DATE:	TIME:				CH CT												

# GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method		
Boron	В	200.8		
Calcium	Ca	200.7		
Chloride	Chloride	300.0		
Fluoride	Flouride	300.0		
рН	рН	SM 4500 H+B		
Sulfate	SO ₄	300.0		
TDS	TDS	SM 2540C		

#### **NTS**

## **Field Report Review Checklist**

6385CC_2023 (Fall) 1016(CA) 526 Chestnut Street Virginia, MN 55792

Printed: 11/6/2023 9:24:42 AM

SAF Reviewed: ✓

Invoice Reviewed:



**Report:** 6385CC_2023 (Fall) 1016(CA) Field work not completed by NTS:  $\Box$ 

Phone: (218) 741-4290

Peer Reviewer:	Date:			Data Mgmt Reviewer:	Date:		
Carrie Jensen	11/6/2023						
		<u>Inclu</u>	<u>uded</u>			<u>Inclu</u>	<u>ided</u>
Completeness Review		Yes:	No:	<b>Completeness Review</b>		Yes:	No:
Cover Sheet:		<b>✓</b>		Cover Sheet:			
<b>Location Information</b>				<b>Location Information</b>			
Data Collection:		<b>✓</b>		Data Collection:			
<b>Observations:</b>		<b>✓</b>		Observations:			
Flow Measurements:			<b>✓</b>	Flow Measurements:			
<b>GW Stabilization:</b>		<b>✓</b>		GW Stabilization:			
Photograph(s):			$\checkmark$	Photograph(s):			
Calibration Report(s):		<b>✓</b>		Calibration Report(s):			
Field Notes:		<b>✓</b>		Field Notes:			
Safety Form(s):		<b>✓</b>		Safety Form(s):			
Supplemental Form(s):		<b>✓</b>		Supplemental Form(s):			
Chain(s) of Custody:		<b>✓</b>		Chain(s) of Custody:			
Figures or Drawings:			<b>✓</b>	Figures or Drawings:			
Accuracy Review	N/A:	Yes:	No:	Accuracy Review	N/A:	Yes:	No:
Field calculations accurate:		<b>✓</b>		Field calculations accurate:			
GW stabilization criteria met:		<b>✓</b>		GW stabilization criteria met:			
Sonde(s) passed post-check:		<b>✓</b>		Sonde(s) passed post-check:			
Consistent values in field notes	s: 🗆	<b>✓</b>		Consistent values in field notes:			
Consistent dates and times:		<b>✓</b>		Consistent dates and times:			
Applicable SOPs followed:		<b>✓</b>		Data qualifiers/comments added:			
Cover sheet provides a				Data under correct Event Key:			
complete description of key		<b>✓</b>		All required parameters			
activities and observations:				measured, calculated, and			
				uploaded to NTS database:			
				All associated limits met:			
Peer Reviewer Comments:				Data Mgmt Reviewer Comments:			
Samples collected utilizing low-flow MW7 turbidity much higher than MW8 and MW9 spec. conductand	past data. Pl	M notifi					

#### **Definitions**

past events.

GW = groundwater, SOPs = standard operating procedures

#### **NTS**

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

#### **Field Report Cover Sheet**

6385CC_2023 (Spring) 0425(CA)

Printed: 4/26/2023 9:16:31 AM



Client:

General Waste Disposal & Recovery

NTS Project: NTS Project Manager:

6385CC - CCR Monitoring and Reporting Scott Seeley

NTS Field Personnel: Field Date:

Corey Andrews 4/25/2023

#### **Summary of Services Performed:**

Prepped and departed for General Waste to conduct Spring 2023 CCR well monitoring. Wells MW7, MW8, MW9, and MW10 were sampled via low flow stabilization method. Unable to meet stabilization criteria for Turbidity at MW8. Well has a history of being problematic with turbidity. At least five well volumes were removed from each well prior to sampling. Samples were ceded to PACE Analytical in Virginia, MN. For additional details see field notes and COC.

Field Blank, Field Di	Associated Field QC: Fie	6	Time: 14:06	Yes	Sample Collected:	
-----------------------	--------------------------	---	-------------	-----	----------------------	--

# DATA COLLECTED

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)		
Conductance, Specific (µS/cm)	1419	Elevation, Groundwater (ft)	1446.47	
ORP vs NHE (mV)	262	Static Water Level (ft)	6.15	
Oxygen, Dissolved (mg/L)	4.85			
pH (SU)	6.81			
Temperature (°C)	5.61			
Turbidity (NTU)	1.7			

## STABILIZATION OR PURGE DATA

Purging Strategy: LOW-F	low Stabilizatio	ON Pun Rai	. U 33 9nm	Well Volur Interv	5 U/min		
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
13:48	6.84	3.85	1397	19.9	238	5.59	6.66
13:54	6.82	4.86	1411	3.0	256	5.51	6.66
14:00	6.82	4.84	1416	2.0	259	5.47	6.66
14:06	6.81	4.85	1419	1.7	262	5.61	6.66
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0, Criteria=+\-0.2	Pass SCond: Range=1%, Criteria=<5%	Pass Turb: MaxValue=3, Criteria= <5	ORP: Range=6,	Pass Temp: Range=0.1, Criteria=+\-0.2	

# ROUTINE OBSERVATION(S)

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present:	Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked:	Yes	Color, Purge:	Colorless	Appearance, Sample:	Clear
Wind Direction:	Е	Unable to Monitor (Dry, Frozen, Other):		Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Cloud Cover:	Partly Cloudy			Odor Intensity, Purge:	None	Odor, Sample:	None
Airborne Particulate:	None			Odor, Purge:	None	Sampling Equipment:	Submersible Pump
Precipitation:	None					1	

# ROUTINE MEASUREMENT(S)

PURGE INFO	MEASURED VALUE	CALCULATED VALUE
Pump Rate(gpm): 0.33	Measured Well Depth(ft): 18.2	Water Column(ft): 12.05
Pump Start 13:42 Time(HH:MM):	Static Water Level(ft): 6.15	Well Volume(gal): 1.97
Pump End 14:10 Time(HH:MM):	Time of Initial SWL 13:36 Measurement(HH:MM):	Volume Purged(gal): 9.24
Pump Duration(min): 28		Well Volume 5.97 Interval(min):

6385CC_2023 (Spring) 0425(CA) Page 2 of 19

# MW10 (cont'd)

## **STATIC INFORMATION**

#### SITE INFO

MDH 847087

Number:

Key 2121 Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1452.62

6385CC_2023 (Spring) 0425(CA) Page 3 of 19

Collected: Yes	Sample	Voc
	Collected:	res

Time: 10:30

DA	ГΑ	CO	ΙΙF	CT	FD
U , \	. , ,	$\sim$		. 🔾 .	$ \nu$

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)	
Conductance, Specific (µS/cm)	2739	Elevation, Groundwater (ft)	1479.23
ORP vs NHE (mV)	390	Static Water Level (ft)	16.9
Oxygen, Dissolved (mg/L)	0.07		
pH (SU)	6.30		
Temperature (°C)	7.83		
Turbidity (NTU)	22.2		

## STABILIZATION OR PURGE DATA

Purging Strategy: LOW-F	Flow Stabilizati	ON Pur	11 / 011111	Well Volun Interv	/ 4 min		
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
9:58	6.16	0.94	2470	46.0	462	7.23	19.29
10:06	6.29	0.59	2585	20.1	426	7.74	19.17
10:14	6.28	0.23	2707	22.2	404	7.99	19.31
10:22	6.29	0.11	2734	22.9	392	7.90	19.44
10:30	6.30	0.07	2739	22.2	390	7.83	19.39
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0.2, Criteria=+\-0.2	Pass SCond: Range=1%, Criteria=<5%	Turb: MaxValue=23,	,	Pass Temp: Range=0.2, Criteria=+\-0.2	

# ROUTINE OBSERVATION(S)

WEATHER		SITE INFO	PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present: Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked: Yes	Color, Purge:	Colorless	Appearance, Sample:	Clear
Wind Direction:	Е	Unable to Monitor (Dry, Frozen, Other):	Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Cloud Cover:	Partly Cloudy		Odor Intensity, Purge:	None	Odor, Sample:	None
Airborne Particulate:	None		Odor, Purge:	None	Sampling Equipment:	Submersible Pump
Precipitation:	None	_				

# **ROUTINE MEASUREMENT(S)**

MEASURED VALUE **PURGE INFO** CALCULATED VALUE

Page 4 of 19 6385CC_2023 (Spring) 0425(CA)

MW7 (cont'd)

Pump Rate(gpm): 0.2	Measured Well Depth(ft): 26.6	Water Column(ft): 9.7
Pump Start 09:50 Time(HH:MM):	Static Water Level(ft): 16.9	Well Volume(gal): 1.58
Pump End 10:35 Time(HH:MM):	Time of Initial SWL 09:40 Measurement(HH:MM):	Volume Purged(gal): 9
Pump Duration(min): 45		Well Volume 7.9 Interval(min):

## STATIC INFORMATION

#### SITE INFO

MDH 817979 Number:

Key 2106 Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1496.13

6385CC_2023 (Spring) 0425(CA) Page 5 of 19

Sample	Vac
Collected:	res

Time: 11:35

<b>DATA</b>	COLI	FC1	FD
$\nu$	COL		LU

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)	
Conductance, Specific (µS/cm)	2031	Elevation, Groundwater (ft)	1461.5
ORP vs NHE (mV)	390	Static Water Level (ft)	32.91
Oxygen, Dissolved (mg/L)	1.92		
pH (SU)	6.24		
Temperature (°C)	8.71		
Turbidity (NTU)	293.8		

## STABILIZATION OR PURGE DATA

Purging Strategy: LOW-FI	low Stabilizatio	n Pum Rat	ווווטרווו	Well Volun Interv	5 44 min		
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
11:11	6.21	1.34	1943	211.9	397	8.61	32.99
11:17	6.19	1.95	1993	164.5	426	8.72	33.16
11:23	6.19	2.01	2013	182.9	405	8.60	33.22
11:29	6.15	1.98	2035	199.4	396	8.61	33.31
11:35	6.24	1.92	2031	293.8	390	8.71	33.38
	Pass pH: Range=0.1, Criteria=+\-0.2	Pass LDO: Range=0.1, Criteria=+\-0.2	Pass SCond: Range=1%, Criteria=<5%	Fail Turb: MaxValue=294, Criteria= <5 Turb: Range=47%, Criteria=<10%	Pass ORP: Range=15, Criteria=+\-20	Pass Temp: Range=0.1, Criteria=+\-0.2	

## **GENERAL OBSERVATIONS**

Turbidity spike while sampling. Historically common for turbidity spikes in this well.

# **ROUTINE OBSERVATION(S)**

WEATHER		SITE INFO	PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present: Yes	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Yellow
Wind Speed:	Calm	Well Locked: Yes	Color, Purge:	Yellow	Appearance, Sample:	Turbid
Wind Direction:	Е	Unable to Monitor (Dry, Frozen, Other):	Appearance, Purge:	Fine Particulate	Odor Intensity, Sample:	None
Cloud Cover:	Partly Cloudy		Odor Intensity, Purge:	None	Odor, Sample:	None
Airborne Particulate:	None		Odor, Purge:	None	Sampling Equipment:	Submersible Pump
Precipitation:	None					

# **ROUTINE MEASUREMENT(S)**

PURGE INFO	MEASURED VALUE	CALCULATED VALUE	

Page 6 of 19 6385CC_2023 (Spring) 0425(CA)

MW8 (cont'd)

	· · · · · · · · · · · · · · · · · · ·			
Pump Rate(gpm): 0.25	Measured Well Depth(ft):	41.22	Water Column(ft):	8.31
Pump Start 11:05 Time(HH:MM):	Static Water Level(ft):	32.91	Well Volume(gal):	1.36
Pump End 11:45 Time(HH:MM):	Time of Initial SWL Measurement(HH:MM):		Volume Purged(gal):	10
Pump Duration(min): 40			Well Volume Interval(min):	5.44

## STATIC INFORMATION

#### SITE INFO

MDH 817978 Number:

Key 2106 Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Drilled Well Depth(ft): 41.2

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1494.41

6385CC_2023 (Spring) 0425(CA) Page 7 of 19

Time: 13:02

DATA	COI	I F	TED
DAIA	COL	ᄔᄔ	こししし

SONDE PARAMETER(S)		OTHER FIELD PARAMETER(S)		
Conductance, Specific (µS/cm)	1565	Elevation, Groundwater (ft)	1443.72	
ORP vs NHE (mV)	123	Static Water Level (ft)	11	
Oxygen, Dissolved (mg/L)	0.08			
pH (SU)	6.56			
Temperature (°C)	7.35			
Turbidity (NTU)	3.2			

## STABILIZATION OR PURGE DATA

Purging Strategy: LOW-FI	ow Stabilizatior	ר Pum Rat	11330000	Well Volun Interv	3 41 min		
Time (HH:MM):	pH (SU):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
12:46	6.45	0.30	1628	36.1	149	8.00	11.04
12:50	6.51	0.12	1606	14.1	143	7.47	11.04
12:54	6.53	0.09	1585	4.2	139	7.46	11.04
12:58	6.56	0.08	1574	3.8	127	7.32	11.04
13:02	6.56	0.08	1565	3.2	123	7.35	11.04
	Pass pH: Range=0, Criteria=+\-0.2	Pass LDO: Range=0, Criteria=+\-0.2	Pass SCond: Range=1%, Criteria=<5%	Pass Turb: MaxValue=4, Criteria= <5	Pass ORP: Range=16, Criteria=+\-20	Pass Temp: Range=0.1, Criteria=+\-0.2	

# ROUTINE OBSERVATION(S)

WEATHER		SITE INFO		PURGE INFO		SAMPLE INFO	
Air Temperature:	41°F to 50°F	Well Plug Present: Yes	es .	Purging Strategy:	Low-Flow Stabilization	Color, Sample:	Colorless
Wind Speed:	Calm	Well Locked: Yes	es .	Color, Purge:	Colorless	Appearance, Sample:	Clear
Wind Direction:	Е	Unable to Monitor (Dry, Frozen, Other):		Appearance, Purge:	Clear	Odor Intensity, Sample:	None
Cloud Cover:	Partly Cloudy			Odor Intensity, Purge:	None	Odor, Sample:	None
Airborne Particulate:	None			Odor, Purge:	None	Sampling Equipment:	Submersible Pump
Precipitation:	None					•	

# **ROUTINE MEASUREMENT(S)**

MEASURED VALUE **PURGE INFO** CALCULATED VALUE

Page 8 of 19 6385CC_2023 (Spring) 0425(CA)

MW9 (cont'd)

	· · · · · · · · · · · · · · · · · · ·	
Pump Rate(gpm): 0.33	Measured Well Depth(ft): 18.9	Water Column(ft): 7.9
Pump Start 12:42 Time(HH:MM):	Static Water Level(ft): 11	Well Volume(gal): 1.29
Pump End 13:05 Time(HH:MM):	Time of Initial SWL 12:37 Measurement(HH:MM):	Volume Purged(gal): 7.59
Pump Duration(min): 23		Well Volume 3.91 Interval(min):

## STATIC INFORMATION

#### SITE INFO

MDH 817980 Number:

Key 0410 Number:

# STATIC MEASUREMENT(S)

#### SITE INFO

Drilled Well Depth(ft): 18.9

Well Casing Diameter(in): 2

Top of Casing Elevation(ft): 1454.72

6385CC_2023 (Spring) 0425(CA) Page 9 of 19

# **Calibration Log**

Staff: Corey Andrews Date: 4/25/2023 Status: pass

**Comments:** 

Sonde:	EQ-08F	PreCal	PostCal	PostEvent	
Last Temp Check:	2/24/2023	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Spec.:	<50 +/-0.1 °C	7:30	7:30	16:45	Specifications:
	SpC-0 (Air):	0.9	0.0	0.0	Sum of
Sta	Standard (μS/cm):		0	0	<100000 +/-1 μS/cm
Tei	mperature (°C):	18.8	18.8	19.0	AND
					+/-0.5%
SpC-100	00 (4206F33-4):	1007	1000	997.0	Sum of
Sta	ndard (μS/cm):	1000	1000	1000	<100000 +/-1 μS/cm
Tei	mperature (°C):	19.9	19.9	19.9	AND
					+/-0.5%
ORP-2	Zobell (2283-1):	444	444	446	<999 +/-20 mV
	Standard (mV):	444.2	444.2	448.2	\333 T/-20 IIIV
Tei	mperature (°C):	19.5	19.5	17.9	
DO (100	0% Saturation):	9.08	9.00	8.86	<8 +/-0.1 mg/L
100% Oxy	gen Saturation:	9.05	9.05	8.99	>=8 AND <20 +/-0.2 mg/L
Tei	mperature (°C):	18.2	18.2	18.5	>=20 AND <60 +/-10%
Barometric Pre	essure (mmHg):	730	730	730	
рН	-4 (4207L51-1):	4.00	4.00	4.04	<14 +/-0.2 SU
	Standard (SU):	4.00	4.00	4.00	<14 +/-0.2 30
Tei	mperature (°C):	19.7	19.7	19.9	
р	H-7 (4210G32):	7.03	7.02	7.02	44./02611
	Standard (SU):	7.02	7.02	7.02	<14 +/-0.2 SU
Tei	mperature (°C):	19.5	19.5	19.8	
pH-1	LO (4206H98-2):	10.03	10.05	10.01	44./02511
-	Standard (SU):	10.06	10.06	10.06	<14 +/-0.2 SU
Tei	mperature (°C):	19.3	19.3	19.5	
Tur	b-0 (DI Water):	0.8	0.0	0.0	400 / 400
	tandard (NTU):	0	0	0	<100 +/-1 NTU >=100 AND <400 +/-12 NTU
	mperature (°C):	18.5	18.5	19.7	>=400 AND <3000 +/-150
					NTU

Sonde:	EQ-08F	PreCal	PostCal	PostEvent	
Last Temp Check:	2/24/2023	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Spec.:	<50 +/-0.1 °C	7:30	7:30	16:45	Specifications:
Turb-100D (120-1): Standard (NTU): Temperature (°C):		106.1	100	101.7	<100 +/-1 NTU
		100	100	100	>=100 AND <400 +/-12 NTU
		19.8	19.8	20.3	>=400 AND <3000 +/-150
					NTU

# **Vehicle Inspection 1**

GENERAL INFO									
Driver: Corey Andrews		Vehicle: VT	-70   2017 GMC S	IERRA		Time(H	H:MM): 08:00		
Odometer(mi):									
DRIVER/PASSENGER SI	DE								
External Side Mirrors (right and left):	☑ Windows (clean, free ☑ of cracks):			Tires (properly inflated, adequate tread):					
FRONT/REAR									
Tail Lights: ⊠	Head ⊠ Lights:	Вос	Damage to ly/Bumpers:	⊠ Lic	ense Plates (t	-	Fluid Leaks:	×	
Turn ⊠ Signals:		·							
ROUTINE MAINTENAN	CE								
Oil Change ⊠ (current):	Transmission	n Fluid (change ev 60k mil		Air Filter (cha	ange every 30 miles		Gauges Ope (check engine li		
Spare Tire (present, properly inflated):	×								
INTERIOR									
Cleanliness:	Check Brakes:		Check 🗵 Horn:	Se	at Belts (work	•	Check Park Br	king 🗵 ake:	
Rearview 🗵 Windows	dshield Wipers ar Flu								
GENERAL/SAFETY									
	Wheel 🗵 Chocks:	First Aid Kit:	×	Operations Manual:	×	Strobe Light (in needed)		Buggy Whip (if needed):	×
DEFICIENCIES CORRECT	ΓED								
No Deficiencies Noted:	×								
Comments:									

## **Field Checkout**

#### **EQUIPMENT**

# Resource:Qty:EQ-08F | Hydrolab MS5 Sonde F1.00EQ-17 | Submersible Pump - Generic1.00EQ-16A | Static Water Level A, 150 ft (Heron)1.00

## VEHICLE(S)

Resource:	Qty:
VT-70   2017 GMC SIERRA	68.00
CONSUMABLES	
Resource:	Qty:
Resource:  CF-04   Glove - Nitrile (ea)	<b>Qty:</b> 6.00

638	5CC	Gen.	Wast	6 cc	e m	our fort	7	4/25/25
Torey	Andrews							
			Most	y Sun	Brito	light &	vanable	
	nerts v							
700		Calibra			, , ,		porto	
1							1 1 6	
107	Depar					1 1 1		
1 1	and the local division in which the latter is not a supply to the	21 ide 11			1 0	7 . 21		1 4 917979
110		The second secon					4	1 4 817 779
	JWL	Two	1 PARTY				f ste	p Kate
		26.60			3 : 00		1035	
	a management of						Temp	
	6858	t t made	0.94	1 1			7.23	19.29
1 .	10.06	5 5 14		2585	20:1	426	7.74	
	1014:	: 6.28	0.23	2707	22.2	404	7.99	19.31
1	1022	6.29	0.11	2734	27.9	392		19.44)
; ; .	1030	6:30	0.07	2739	22.2	390	7.83	19:391
	* 5 well	1 1 1	s remes	ed pros	or to se	ung (ine,	SWL A	Pter3 19.30
150								#817978
		-rail		UCU			tert 51	~
	32.91	41:22	A 1	The state of the s	36	1105	114	and the second second
	1 1	1	200	1 1 1	Cib		1 1	
1	Contract of the Contract of th	6.21 1			211.9		8.61	32,99'
11	A STATE OF THE STA	6.19 1.	f to t		164.5	426	8,72	
1 1	1 1	1 1 2	A	1 1 1 1				33.16
1		1, 1	1 1 1	1 1 1 1	182.9	4.05	8.60	33.22
	1 1 1	1	1 7 -		199,4	396	8,61	33.31
1 :					293.8	390	8.71	33.38
1	* 700			sampling.	1 1 4 1	leters: 33.		
230	(mw-	?   Well	locked	7 14 g	cool con	Sitebn.	Unigoe u	ell # 817880
1	5WL	7000	! : w	C V	ol E	ening 54		
	11,00	18:90	01 7.9	20 11	29: :	1242	1 : 130	35 0.33
	Time	PH	LDO	Soc	Turb	BRP	Temp	Soul
	1246	6.45	0.36	1628	36-1	149	8.00	11.04
1 1	1256	6.51	0.12	1606	14.1	143	7.47	11.04!
	1254	1	0.07	1585	4.2	139	7.46	11.041
	12.58	I I I WANT	0.08	1574	3.8	127	7.32	11.04
: !	1302		0.08	1565	3.2	123	7.35	11.04
1 1	: 5WL	1 41 1 1						
1					1			
: :					17			
: :	1 1 1			1	/			
1 1	1 1 1							
A- 1	1 1	1 1 1		1	1 1 1			
							1 1 1	

Over	halle	Gen Was						7/20/	2)
Wedt	hers H	gh 45°F	Mostly	5. 4.1	I word 1	1-1 9	in a life	1 1 1	
1320	Mw-	io well (	ocked &	30000	C4 1 3	ign i	variable	i Hadiz	200
	SWL	Chit	w	1/1	Corolit	SI -(	goe wel	7. 78 14	180
	6.15	TWD 18.20	12:05	1900=	Zelt Jam	73	310	P Ko	37
	Tome	(H.)	100	Sac	10	TZ .	) 41	0 0.	
	1348	6.84	2 85	1397	100	128	Temp	Su	
	1354	6.82	4 86	1397	20	161			
	1400	6.87	4 84	1416	20	0.50	5.51		00
	1406		405	1419	1.7	201	0.41	6-6	96
	SIN	0.01	151 5	1000	il i	262	5,61	66	6
1450	mot w	Asters 6.	ال ال	imple 17	16 Das	0-1407	E3.	1410	1
1535	THE WAY	Gen. U	0551575	a w/ hi	3 sampl	ing			
11.75	Part	Gen. U	Vaste-	100					
16:27	A.	Samples:	to Pr	TCE AV	inlytica	(0)	1:0		
1000	Mrshe.	back at	N15: 8+1	ize. Unla	al Pos	t chack	Repor	d.	
- 1 1	1 1 1								
			1	1					
- ; ;		1 1 1		/					
		: :/:	//	/ /	/: /:				
1 1		1 /	V: : /	1/2	( / 0				
		-: 1/: :	Ale II	1:1/2		2		1 1	
1 :			10/0 1/2				1 1 1		
1 1			1 1/3					1 1	
				/	1		111		
				9/25	/202	5	1 1 1	1 1	-
				1/1	1202	7	1	1 1	
				1 1 1		. 1 1 1		1 1 1	
			1 1 1	1 1 1	11/		1	-1-1-1	- : :
							1 1 1	-	
1 1					1	1 .1		1 1 1	- ; ;
			111	1 1 1 1	/		1 1 1	1111	- 1
1 1 1	111	1 1 1 1	1 1 1	1	1 1 1	1 4 1	1 1 1	1-1-1	
	111			- /			111		1 1
111	1 1 1	11111	+++	/			1 1 1		
111			-	/ : : :					
		1 1 1	1 1/	1 1 1 1					
- 1 1		1 1 1 1	11/			1 1			10
1 1 1	111	1 1 1 1	: / :						
		1 1 1				1 1 1	1 1 1		
1	1 1	V 1		: : :	: : :	1 1 1	1	1 1 1	1



## **Daily Tailgate Safety**

Project: <b>8</b> 638500	Date: 4/25/23	
Work Site Hazard Assessment Worksheet  PPE Required (List):	Viz.	Level*
☐ Vehicular Traffic	Communications	
Noise	☐ Equipment/Tools	
Housekeeping	Other Site Hazards**	
☐I have examined the work place named and ☐I have examined the work place named and taken		corrective action
Hazards Identified/Safety Items Discusse Moddy (wet warking co.	d: nd.tons	
Corrective Actions Taken:  Drive according to con	1,7,ons	
Participants in Safety Discussion:		2 0
1. Coney Hadrews	Signature	
2	No.	Chinada Salamana
3.		
4	· ·	
5.		
Signature of Site Supervisor/Examiner:	Date	1: 4/25/23
*Level D, C, B or A	<i>O</i> ,.	<i>(</i>

^{**}Examples: Heavy Equipment, Air Quality, Flammable materials, Wildlife, Work Site Security, Confined Space



3	NTS	PAGE 1 OF 1
VIRGII Environmental Science & Engineering (218) 741-4290	VIRGINIA, MN 55792 41-4290 Fax: (218) 741-4291	1 1
CLIENT NAME; ADDRESS, PHONE#:	REPORTIO:	TOPE & # CONTAINERS
GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA	SCOTT SEELEY & KARISSA VOSEN	SEE ATTAC
		HEMIS METALS
SAMPLER: Covey Androws	PERMIT REQ.: SW-620-002	L CHI AL CH TAL M
PROJECT: GENERAL WASTE DISPOSAL and RECYCLING, LLC.	Apr-23	IERA NER/ TOT
JUMBER: 6385CC CCR Monitoirng	COLLECTION: MATRI	GE D
	DATE:	REQUIRED ANALYSIS
MW7 GW WELL	4/25/23 103d × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
MW8 GW WELL	4/26/23 1135 × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
MW9 GW WELL	4/25/23 1302 × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
MW10 GW WELL	4/25/23 1406 × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
Field Duplicate GW WELL	4/25/23 1407 × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
Field Blank Field Blank	4/25/23 1410 × N	1 1 Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	-	
RELINQUISHED BY: // DATE: 4/25/23	RECEIVED BY:	DATE: TIME:
	RECEIVED FROM NTS SAMPLE LOCKUP BY:	DATE:
RECEIVED FOR LAB BY:	TEMP.AT ARRIVAL:	TING.
DATE: 135/33 TIME: 1035		

bodteM A93	SYMBOL	PARAMETER
8.002	В	Boron
7.002	БЭ	muiɔleƏ
. 0.00£	9biroldD	9bi1oldD
0.008	9binuol <del>1</del>	Fluoride
8H 4200 H+B	Нq	Hq
0.008	⁵OS	Sulfate
2M 2540C	SOT	SQT

#### NTS

### **Field Report Review Checklist**

6385CC 2023 (Spring) 0425(CA)

Printed: 5/5/2023 1:26:25 PM



Virginia, MN 55792 Phone: (218) 741-4290

526 Chestnut Street

**Report:** 6385CC 2023 (Spring) 0425(CA)

Field work not completed by NTS: SAF Reviewed: ✓ **Peer Reviewer:** Date: **Data Mgmt Reviewer:** Date: Terri Sabetti 4/26/2023 Included Included **Completeness Review** Yes: No: **Completeness Review** Yes: No: **Cover Sheet: V Cover Sheet: Location Information Location Information V Data Collection: Data Collection: Observations: V Observations:** Flow Measurements: **V** Flow Measurements: **GW Stabilization: V GW Stabilization:** Photograph(s):  $\checkmark$ Photograph(s): **V Calibration Report(s):** Calibration Report(s): **V** П **Field Notes: Field Notes:** Safety Form(s): **~** Safety Form(s): **V Supplemental Form(s):** Supplemental Form(s): Chain(s) of Custody: Chain(s) of Custody: **V Figures or Drawings: V Figures or Drawings:** N/A: N/A: **Accuracy Review** Yes: No: **Accuracy Review** Yes: No: **V** Field calculations accurate: Field calculations accurate: **V GW** stabilization criteria met: GW stabilization criteria met: Sonde(s) passed post-check: П **V** Sonde(s) passed post-check: П **Consistent values in field notes: ~** Consistent values in field notes: **Consistent dates and times: V** Consistent dates and times: **V Applicable SOPs followed:** Data qualifiers/comments added: Cover sheet provides a **Data under correct Event Key:** complete description of key **V** All required parameters activities and observations: measured, calculated, and uploaded to NTS database: All associated limits met: **Peer Reviewer Comments: Data Mgmt Reviewer Comments:** MW8: Stabilization failed to meet NTS acceptance criteria for NTU; Data was qualified. Has been a recurring issue. Compared to past events: MW10-SpC sl. higher MW7-ORP sl lower MW8-DO sl higher; NTU much higher MW9-ORP sl lower

#### **Definitions**

# APPENDIX B April 2023 & October 2023 Statistical Analysis



June 27, 2023

Mr. Alan Phillips Dem-Con Companies 13020 Dem-Con Drive Shakopee, MN 55379 alanphillips@dem-con.com

Sent Via Email

RE: Statistical Analysis for April 2023 groundwater monitoring event for CCR compliance at the Keewatin, MN facility

Mr. Phillips,

NTS is pleased to submit this report summarizing the CCR monitoring data collected in April 2023 as well as the statistical analysis completed in accordance with the facility Statistical Analysis Plan (SAP).

MW-3R which was included in the initial groundwater monitoring plan was abandoned during landfill expansion during the summer of 2019. This down-gradient compliance well has been replaced with MW-10 in the groundwater monitoring network. MW-10 was first monitored on May 29, 2020. The first monitoring event included the CCR guidance Appendix III and Appendix IV parameters. Currently, with only 7 samples collected, upper prediction limits (UPLs) cannot be established for MW-10. MW-10 will continue to be monitored and statistics completed once a sufficient background dataset has been collected (approximately 8 samples).

Since only 2 compliance/downgradient wells are able to be assessed against a background dataset for statistically significant increases (SSIs), the current groundwater monitoring system does not meet the requirements of 40 CFR 257.91, and a complete semi-annual evaluation to determine if a SSI has occurred as outlined by the site specific Statistical Analysis Plan (SAP) cannot be fully completed. MW-8 and MW-9 will be assessed for a SSI and general comments regarding MW-10 data provided.

Review of the data indicates that no trigger values were exceeded during the April 2023 monitoring event. Parameters measured at MW-10 appear congruent with Sulfate and Total dissolved Solids (TDS) being slightly elevated compared to previous measurements at the same location.

#### **Detection Monitoring**

Detection monitoring at the Keewatin facility includes monitoring of 4 groundwater wells, one upgradient well (MW-7) and three downgradient wells (MW-8, MW-9, and MW-10). MW-3R has been replaced by MW-10 beginning in May, 2020. Field parameters and laboratory samples were collected on April 25, 2023 at all monitoring locations. Laboratory results were received from PACE Analytical on May 8, 2023. Lab analyses completed includes those found in the CCR guidance Appendix III table (See Appendix C). The monitoring results and the established detection monitoring trigger values can be seen in Tables 1 and 2, respectively.



Table 1
2023 April Detection Monitoring Event Results

		8		
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	66.7	92.6	36.2	20.0
Calcium (mg/L)	539	403	199	215
Chloride (mg/L)	1.5	1.1	7.9	1.2
Fluoride (mg/L)	0.079	0.075	0.09	0.13
pH (SU)	6.30	6.24	6.56	6.81
Sulfate (mg/L)	1480	790	448	548
Total Dissolved Solids (mg/L)	2380	1700	1120	1100

Table 2
Detection Monitoring Trigger Values (updated January 2022)

				· ·
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	110.75	105.15	44.46	TBD
Calcium (mg/L)	659.21	434.46	234.98	TBD
Chloride (mg/L)	137.06	1.87	20.97	TBD
Fluoride (mg/L)	0.11	0.11	0.11	TBD
pH (SU)	6.02 - 6.79	6.08 - 6.83	6.22 - 7.06	TBD
Sulfate (mg/L)	1537.59	852.16	525.81	TBD
Total Dissolved Solids (mg/L)	2863.07	1829.75	1260.69	TBD

#### **Statistical Analysis**

The Statistical Analysis Plan (SAP) for the facility and CCR guidance details that only downgradient wells (compliance wells) are to be analyzed for Statistically Significant Increases (SSIs). The SAP also specifies a 2-sample test be used to determine if an SSI has occurred.

The April 2023 monitoring data does not indicate that an SSI has occurred at the Keewatin facility. However, the analysis is incomplete with only 2 downgradient wells monitored and compared to a background dataset. MW-10 does not have established detection monitoring trigger values determined yet due to an inadequate background dataset size.

CCR Statistical Analysis for April 2023 Event Dem-Con Companies Keewatin, MN Page 3 of 3



No parameters at MW-8 or MW-9 exceeded established trigger values in the April 2023 monitoring event.

The SAP for the facility indicates that the background dataset shall be updated every two years, provided an SSI has not occurred, by including the additional data into the background dataset. The background dataset was updated in the 2021 annual report with the data collected during 2020 and 2021. The updated trigger values are reflected in Table 2. Due to the trending values observed in MW-7, as well as MW-7 having significantly higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) compared to the downgradient locations, detection monitoring trigger values for MW-8 and MW-9 were based completely on intrawell analysis (comparing recent measurements from a well to background measurements from the same well) instead of interwell analysis (comparing values of MW-7 (upgradient) to MW-8 and MW-9 (downgradient)).

If you have any questions, please contact me at (218) 742-1022.

Sincerely,

Northeast Technical Services, Inc.

Evan C. Johnson, PE Geotechnical Engineer

Appendix A: April 2023 Monitoring Results

Appendix B: Statistical Analysis Plan

Appendix C: Appendix III & Appendix IV Parameters

## Appendix A: April 2023 Monitoring Results

(removed due to duplication in Annual Report)

# Appendix B Sampling and Analysis Plan

## GENERAL WASTE & RECYCLING, LLC SW-620 INDUSTRIAL WASTE LANDFILL

#### Statistical Analysis Plan for Groundwater Monitoring Data

Prepared For:

#### GENERAL WASTE & RECYCLING, LLC

Prepared by:

Northeast Technical Services, Inc. 526 Chestnut Street Virginia, Minnesota 55792

(218) 741-4290

October 6, 2017

Project Number: 6385CC

"I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete." I certify that this groundwater stasistical analysis plan for the General Waste Industrial Waste Landfill described in this report meets all requirements put forth by 40 CFR §257.93 'Groundwater Sampling and Analysis Requirements.'

Evan Johnson, P.E.

Geotechnical Engineer

Minnesota License No. 53648

10-13-17 Date



### **Table of Contents**

1.0 PURPOSE	1
2.0 INITIAL BACKGROUND MONITORING	1
2.1 BACKGROUND MONITORING PARAMETERS	
<ul><li>2.2 BACKGROUND DATA ANALYSIS</li><li>2.3 ESTABLISHING BACKGROUND DATASET</li></ul>	
2.3.1 Summary Statistics and Distribution	
2.3.2 Interwell and Intrawell Analysis	
2.3.3 Upper Prediction Limit	
2.4 ANALYZING FOR TRENDS	
2.5 Non-Detect Data	
2.6 OUTLIERS	
3.0 DETECTION MONITORING	3
3.1 STASTICALLY SIGNIFICANT INCREASE	
3.1.2 Pracitical monitoring Practice	
3.1.3 Responding to an SSI	
4.0 ASSESSMENT MONITORING	
4.1 MONITORING PARAMETERS	
4.2 GROUNDWATER PROTECTION STANDARD	
4.3 MOVE TO CORRECTIVE ACTION	
4.4 RETURN TO DETECTION MONITORING	
5.0 UPDATING BACKGROUND DATA	5

## List of Tables

TABLE 1: APPENDIX III PARAMETERS TABLE 2: APPENDIX IV PARAMETERS

## List of Figures

FIGURE 1: PROJECT LOCATION MAP

General Waste Industrial Landfill – Keewatin, MN CCR Groundwater Monitoring System Certification October 4, 2017 Page 1 of 6



#### 1.0 Purpose

Per 40 CFR 257.93 'Groundwater Sampling and Analysis Requirements' (the rule), a statistical procedure for assessing collected groundwater data as to whether or not a release has occurred must implemented at all CCR units. The rule outlines five (5) statistical methods that may be utilized for analyzing collected data. The statistical procedure utilized should account for spatial variance, temporal trends, and address the handling of non-detect data. This Statistical Analysis Plan has been prepared to meet the requirements of the rule and provide the framework for analyzing the collected groundwater data at the General Waste & Recycling, LLC facility (the facility) in Keewatin, Minnesota.

#### 2.0 Initial Background Monitoring

#### 2.1 Background Monitoring Parameters

The rule requires background monitoring of all CCR monitoring wells and eight (8) groundwater monitoring events must be completed prior to October 17, 2017. For this Statistical Analysis Plan, background monitoring includes monitoring for all parameters listed in Appendix III and Appendix IV of 40 CFR 257.93 (see Table 1 and Table 2, respectively).

#### 2.2 Background Data Analysis

Per the rule, within 90 days of collecting the final background dataset, statistical analysis of the data is to be completed. Statistical analysis can be any of those allowed by the rule and should establish a means of determining if a Statistically Significant Inscrease (SSI) of a monitored parameter occurs during operation of the CCR unit to help determine if a leak or release has occurred from the CCR unit.

#### 2.3 Establishing Background Dataset

#### 2.3.1 Summary Statistics and Distribution

Once the final background dataset has been collected, summary statistics should be computed, including mean and variance. An analysis of the data set be conducted to see if data is parametric (normally distributed). A Shapiro-Wilk analysis should be completed to make this determination. This should be completed for each parameter at each well installation. If the data is skewed and does not pass the normality test, the data may be able to be transformed to a normal distribution via lognormal plotting.

If a normal distribution cannot be achieved naturally or by transformation, non-paremetric statistics may be utilized.

General Waste Industrial Landfill – Keewatin, MN CCR Groundwater Monitoring System Certification October 4, 2017 Page 2 of 6



#### 2.3.2 Interwell and Intrawell Analysis

It is recommended that the primary method of determining if a SSI has occurred at the site utilize an interwell analysis. This analysis will look at the dataset of the upgradient well (background well) to determine the Upper Prediction Limit (UPL), for the downgradient well concentrations. However, if spatial variation is present in the monitoring system, it may be necessary to assess data from an intrawell analysis. This analysis looks at the background dataset for a specific parameter in the same well to determine if a SSI has occurred. Both methods are viable and can be used for specific parameters. It is not necessary to have a single analysis type for all wells for all parameters at the facility.

Care should be taken when conducting an interwell analysis when the background dataset for downgradient wells may be affected by pre-existing CCR impacts. Given the timeframe of placed CCR materials at the facility, the estimated groundwater velocity, and the monitoring well locations, none of the existing monitoring wells would be expected to exhibit any signs of CCR impact. However, analysis should be completed for any future wells installed.

#### 2.3.3 Upper Prediction Limit

Per the recommendation from the USEPA "Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities Unified Guidance (2009)" (Unified Guidance) document, Upper Prediction Limits (UPL) will be utilized to assess for a SSI in the downgradient wells the facility. The UPL is calculated as follows:

$$UPL = x + ks$$

#### Where:

x = mean parameter concentration of background dataset

s = standard deviation of background dataset

k = site specific multiplier provided by the Unified Guidance Tables 19, depends on number of wells, number of parameters to be analyzed, size of background dataset

The UPL statistical method allows for both interwell and intrawell comparison.

#### 2.4 Analyzing for Trends

Trends in data may occur due to natural temporal factors, but are not expected to be seen in the initial background dataset. Trend analysis should be completed for the background datasets. If a trend does exist, this should trigger an analysis to assess the potential cause of the trend (especially upward trends of monitored concentrations) and determination of the method to correct for the trend in the statistical approach.

Trend analysis to determine if a statistically significant trend exists can be completed by utilizing the Theil-Sen slope analysis with Mann-Kendall trend test ( $\alpha = 0.05$ ) (non-parametric, more suitable for datasets with >20% non-detect results) or a Ordinary Least Squares (OLS) linear regression with Student's t-test ( $\alpha = 0.01$ ) (parametric dataset, <20% non-detect results).

General Waste Industrial Landfill – Keewatin, MN CCR Groundwater Monitoring System Certification October 4, 2017 Page 3 of 6



#### 2.5 Non-Detect Data

Datasets that have less than 20% non-detect data may substitute the reporting limit divided by 2 (RL/2 method) for non-detect results for statistical analysis.

Datasets that contain 20-50% non-detect data must utilize the Kaplan-Meier method to compute summary statistics for the dataset.

Datasets that contain more than 50% non-detect data will not be able to compute summary statistics data reliably. It is recommended that the UPL be set to the highest or second highest observed value.

If all background data are non-detect, than the UPL shall be set to the highest Reporting Limit (RL) (assuming a reasonable RL have been reported that are below MCL concentrations).

#### 2.6 Outliers

The dataset should be analyzed for outlier datapoints. This can be done visually by examining a time series plot of the data or by a box-and-whisker plot. If a datapoint appears to be an outlier, field notes, lab reports, and analysis programs should be checked for indications of erroneous data or transcription erros.

Numerical methods of determining an outlier may include a 3-sigma analysis for parametric data (data point outside of 3 standard deviations) or the following for non-parametric data if the data point x is:

$$x > x'_{.75} + 3 * IQR$$

Where:

X = individual data point x'.75 = Third QuartileIQR = x'.75 - x'.25 (InterQuartile Range)

Datapoints determined to be outliers due to erroneous data collection may be removed from the dataset. Datapoints that appear to be representative data but are extreme may be excluded from the statistical analysis, but should remain in the data for future evaluation if the data set significantly changes.

#### 2.7 Duplicate Samples

Duplicate samples collected for quality control means should not be included in the statistically analyzed dataset as they are not physically independent and will inappropriately skew the data.

#### 3.0 Detection Monitoring

Following the completion of the background monitoring, detection monitoring will be initiated at the facility. Detection monitoring is to be conducted semiannually (preferably in the spring and General Waste Industrial Landfill – Keewatin, MN CCR Groundwater Monitoring System Certification October 4, 2017 Page 4 of 6



fall) and analyzed for Appendix III parameters only. Statistical analysis of the data must be completed within 90 days of receiving laboratory data.

#### 3.1 Stastically Significant Increase

#### 3.1.1 Two Sample Test

Two sample testing indicates that if a UPL (either interwell or intrawell) is exceeded for a parameter, then a second sample should be collected and analyzed. If analysis of the second sample indicates a concentration below the UPL, then a SSI has not occurred. If the second sample indicates a value above the UPL, then a SSI has occurred.

Three Sample Testing which would require 3 consecutive samples to indicate concentrations above the UPL for a SSI to be indicated may be appropriate for specific situations. One situation would be if False Positive readings (Type II error) appears to be exceeding 10% of the total dataset.

#### 3.1.2 Practical monitoring Practice

Downgradient constituents should be compared to the established UPL determined from the upgradient well data (for interwell comparisons) or compared to the UPL determined from the segregated background dataset for the individual well (intrawell comparison). If a parameter exceeds a UPL, a second sample should be collected from the well and analyzed. If the second sample indicates a value above the UPL, then it can be determined that a SSI has occurred and Assessment monitoring should be initiated.

#### 3.1.3 Responding to an SSI

If the statistical evaluation indicates a SSI has occurred, the data should be further evaluated to determine if the the SSI is likely caused by a CCR unit release and assessment monitoring should be initiated or if other factors of influence can be demonstrated to be taking effect. This demonstration must be certified by a qualified professional engineer within 90 days of completing the statistical evaluation (in addition to the 90 day requirement for conducting the statistical analysis).

#### 4.0 Assessment Monitoring

Assessment monitoring occurs once evaluation of Detection Monitoring parameters (Appendix III) indicates a SSI and there is reason to believe that the SSI could indicate a release from a CCR unit. Assessment monitoring must begin within 90 days of determining that a SSI related to a potential release of the CCR unit has occurred.

#### **4.1 Monitoring Parameters**

The initial assessment monitoring event must include all parameters listed in Appendix III and Appendix IV of 40 CFR 257.93 at all monitoring well locations. Subsequent monitoring events may include Appendix III parameters and only the Appendix IV parameters that were detected in the initial monitoring event. Assessment monitoring will also be conducted on a semi-annual basis (e.g., spring and fall monitoring events).

General Waste Industrial Landfill – Keewatin, MN CCR Groundwater Monitoring System Certification October 4, 2017 Page 5 of 6



#### 4.2 Groundwater Protection Standard

A Groundwater Protection Standard (GWPS) must be established for each Appendix IV parameter. For parameters for which the USEPA has established a Maximum Contaminant Level (MCL), the MCL (shown on Tables 1 and 2) shall be used for the GWPS. For the parameters for which a MCL has not been established, then the Upper Tolerance Limit (UTL) ( $\alpha = 0.05$ , 95% coverage) of the parameter utilizing the upgradient (background) well(s) shall be utilized to establish a GWPS for the specific parameter. This determined UTL concentration shall be applied site-wide for all downgradient wells.

#### 4.3 Move to Corrective Action

The UPL and UTL are useful to assess for a SSI or measurable increase above background. However, in order to assess if a dataset has stastically exceeded a set value (the GWPS), Confidence Limits would be the most appropriate. If the Lower Confidence Limit (LCL) of the Assessment Monitoring dataset exceeds the GWPS, then movement into Corrective Action is warranted.

This Statistical Analysis Plan does not address Corrective Action methods of monitoring. Corrective Action methods will be developed if required per the rule..

#### 4.4 Return to Detection Monitoring

Assessment monitoring may cease and detection monitoring be re-initiated when all Appendix III and monitored Appendix IV parameters are below background (upgradient well) concentrations.

#### 5.0 Updating Background Data

Background datasets should be updated every 2 years assuming that a SSI has not occurred. A Student t-test ( $\alpha$ =0.01, parametric) or Mann-Whitney ( $\alpha$  = 0.05, non-parametric) should be utilized to assess if the existing background dataset and the dataset to be added to the background dataset are statisctically different. If the data is shown not to be significantly different, the dataset should be pooled and the background dataset updated. If analysis of the data using the t-test or Mann-Whitney test indicates a statistical difference, the data should be analyzed to determine a potential cause for the stastistically significant difference.

TABLE 1 Appendix III Parameters			
Parameter	MCL		
Boron	NA		
Calcium	NA		
Chloride	NA		
Fluoride	4.0 mg/L		
рН	NA		
Sulfate	NA		
Total Dissolved Solids (TDS)	NA		

TABLE 2 Appendix IV Parameters				
Parameter	MCL			
Antimony	0.006 mg/L			
Arsenic	0.01 mg/L			
Barium	2.0 mg/L			
Beryllium	0.004 mg/L			
Cadmium	0.10 mg/L			
Chromium	0.10 mg/L			
Cobalt	NA			
Fluoride	4.0 mg/L			
Lead	0.015 mg/L			
Lithium	NA			
Mercury	0.002 mg/L			
Molybdenum	NA			
Selenium	0.05 mg/L			
Thallium	0.002 mg/L			
Radium 226 and 228 combined	5 pCi/L			



# Appendix C CCR Appendix III and Appendix IV Tables

TABLE 1 Appendix III Parameters			
Parameter	MCL		
Boron	NA		
Calcium	NA		
Chloride	NA		
Fluoride	4.0 mg/L		
рН	NA		
Sulfate	NA		
Total Dissolved Solids (TDS)	NA		

TABLE 2 Appendix IV Parameters				
Parameter	MCL			
Antimony	0.006 mg/L			
Arsenic	0.01 mg/L			
Barium	2.0 mg/L			
Beryllium	0.004 mg/L			
Cadmium	0.10 mg/L			
Chromium	0.10 mg/L			
Cobalt	NA			
Fluoride	4.0 mg/L			
Lead	0.015 mg/L			
Lithium	NA			
Mercury	0.002 mg/L			
Molybdenum	NA			
Selenium	0.05 mg/L			
Thallium	0.002 mg/L			
Radium 226 and 228 combined	5 pCi/L			



January 8, 2024

Mr. Alan Phillips Dem-Con Companies 13020 Dem-Con Drive Shakopee, MN 55379 alanphillips@dem-con.com

Sent Via Email

RE: Statistical Analysis for October 2023 groundwater monitoring event for CCR compliance at the Keewatin, MN facility

Mr. Phillips,

NTS is pleased to submit this report summarizing the CCR monitoring data collected in October 2023 as well as the statistical analysis completed in accordance with the facility Statistical Analysis Plan (SAP).

MW-3R which was included in the initial groundwater monitoring plan was abandoned during landfill expansion during the summer of 2019. This down-gradient compliance well has been replaced with MW-10 in the groundwater monitoring network. MW-10 was first monitored on May 29, 2020. The first monitoring event included the CCR guidance Appendix III and Appendix IV parameters. There are now 8 samples collected, which should provide sufficient background to generate upper prediction limits (UPLs). UPLs will be established for MW-10 and provided in the 2023 Annual Report. MW-10 will plan to be assessed utilizing the determined UPLs during the 2024 monitoring events.

Since only 2 compliance/downgradient wells are able to be assessed against a background dataset for statistically significant increases (SSIs), the current groundwater monitoring system does not meet the requirements of 40 CFR 257.91, and a complete semi-annual evaluation to determine if a SSI has occurred as outlined by the site specific Statistical Analysis Plan (SAP) cannot be fully completed. MW-8 and MW-9 will be assessed for a SSI and general comments regarding MW-10 data provided.

Review of the data indicates that no trigger values were exceeded during the October 2023 monitoring event. Parameters measured at MW-10 appear congruent with previous measurements at the same location. Boron at MW-9 was reported as <50 ug/L, and the associated trigger limit is 44.46 ug/L. The elevated reporting limit was caused by the laboratory conducting the test with a dilution faction of 5, even though it was unnecessary. This was not considered a trigger value exceedance.

#### **Detection Monitoring**

Detection monitoring at the Keewatin facility includes monitoring of 4 groundwater wells, one upgradient well (MW-7) and three downgradient wells (MW-8, MW-9, and MW-10). MW-3R has been replaced by MW-10 beginning in May, 2020. Field parameters and laboratory samples were



collected on October 16, 2023 at all monitoring locations. Laboratory results were received from PACE Analytical on October 31, 2023. Lab analyses completed includes those found in the CCR guidance Appendix III table (See Appendix C). The monitoring results and the established detection monitoring trigger values can be seen in Tables 1 and 2, respectively.

Table 1
2023 October Detection Monitoring Event Results

2020 October Detection World Devent Results				
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	84.9	76.8	<50	<50
Calcium (mg/L)	498	387	213	189
Chloride (mg/L)	1.9	1.4	8.0	1.1
Fluoride (mg/L)	0.072	0.060	0.084	0.16
pH (SU)	6.2	6.38	6.7	7.4
Sulfate (mg/L)	1370	825	431	427
Total Dissolved Solids (mg/L)	2470	1790	1190	920

Table 2
Detection Monitoring Trigger Values (updated January 2022)

		00 (1	. ,	
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	110.75	105.15	44.46	TBD
Calcium (mg/L)	659.21	434.46	234.98	TBD
Chloride (mg/L)	137.06	1.87	20.97	TBD
Fluoride (mg/L)	0.11	0.11	0.11	TBD
pH (SU)	6.02 - 6.79	6.08 - 6.83	6.22 - 7.06	TBD
Sulfate (mg/L)	1537.59	852.16	525.81	TBD
Total Dissolved Solids (mg/L)	2863.07	1829.75	1260.69	TBD

#### **Statistical Analysis**

The Statistical Analysis Plan (SAP) for the facility and CCR guidance details that only downgradient wells (compliance wells) are to be analyzed for Statistically Significant Increases (SSIs). The SAP also specifies a 2-sample test be used to determine if an SSI has occurred.

CCR Statistical Analysis for October 2023 Event Dem-Con Companies Keewatin, MN Page 3 of 3



The October 2023 monitoring data does not indicate that an SSI has occurred at the Keewatin facility. However, the analysis is incomplete with only 2 downgradient wells monitored and compared to a background dataset. MW-10 does not have established detection monitoring trigger values determined yet. However, with the completion of the October 2023 monitoring event, MW-10 has 8 samples collected. Statistics will be calculated and trigger values determined to be utilized for MW-10 for the 2024 monitoring events. These values will be reported in the 2023 Annual Report.

No parameters at MW-8 or MW-9 exceeded established trigger values in the October 2023 monitoring event.

The SAP for the facility indicates that the background dataset shall be updated every two years, provided an SSI has not occurred, by including the additional data into the background dataset. The background dataset was updated in the 2021 annual report with the data collected during 2020 and 2021. The updated trigger values are reflected in Table 2. Due to the trending values observed in MW-7, as well as MW-7 having significantly higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) compared to the downgradient locations, detection monitoring trigger values for MW-8 and MW-9 were based completely on intrawell analysis (comparing recent measurements from a well to background measurements from the same well) instead of interwell analysis (comparing values of MW-7 (upgradient) to MW-8 and MW-9 (downgradient)). The data collected in 2022 and 2023 will be incorporated into the background dataset and updated trigger values reported in the 2023 annual report to be utilized for future monitoring.

If you have any questions, please contact me at (218) 742-1022.

Sincerely,

Northeast Technical Services, Inc.

Evan C. Johnson, PE Geotechnical Engineer

Appendix A: October 2023 Monitoring Results Appendix B: Statistical Analysis Plan

Appendix C: Appendix III & Appendix IV Parameters

## Appendix A: October 2023 Monitoring Results

(Removed due to duplication in Annual Report)

## Appendix B Sampling and Analysis Plan

(Removed due to duplication in Annual Report)

# APPENDIX C 2024 UPDATE OF BACKGROUND DATASET RATIONALE/WORKFLOW

A two year period of detection monitoring was completed at General Waste CCR Facility. The Statistical Analysis Plan (SAP) indicates the background dataset should be assessed following a two year period and detection monitoring added to the background dataset if not statistically different and if no Statistically Significant Increase (SSI) has occurred. The following outlines the process followed to assess the detection/background monitoring results for the Appendix III parameters (Boron, Calcium, Chloride, Fluoride, Sulfate, TDS, pH).

- 1.) Complete time series Plots for 4 CCR wells at the facility to allow for visual assessment of Detection monitoring as it relates to background monitoring data.
  - a. MW-7 indicates large trends in Chloride, TDS, and Sulfate, with Chloride decreasing, and TDS & Sulfate increasing, though the data appears to be relatively stable over the last 2-3 years.
  - b. MW-8 Sulfate and TDS was elevated in 2022-2023 compared to 2018-2021, but comparable to the baseline data collected in 2016-2017.
  - c. MW-9 detection dataset appears generally consistent with background dataset
  - d. MW-10 data appears generally consistent with perhaps a minor decreasing trend in Chloride present.
- 2.) A Students T-Test (STT) was conducted ( $\alpha$ =.01)(no Non-detects) or Tarone-Ware (TW) ( $\alpha$ =.01)(with Non-detects) to assess if the background dataset (2016-2021) and detection monitoring dataset (2022-2023) were statistically different or not. If the p-value is not less than 0.01, the background and detection monitoring datasets are not statistically different.

#### a. MW-7

- i. Boron (TW): p=.337
- ii. Calcium (STT): p=.09
- iii. Chloride (STT): p=.002<.01, 2022-2023 Chloride is statistically less than the background dataset.
- iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no change
- v. Sulfate (STT): p=.002<.01, Sulfate in 2022-2023 was statistically higher than background dataset
- vi. TDS (STT): p=.025
- vii. pH (STT): p=.958

#### b. MW-8

- i. Boron (TW): p=.863
- ii. Calcium (STT): p=.141
- iii. Chloride (STT): p=.579
- iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no change
- v. Sulfate (STT): p=.004<.01, Sulfate in 2022-2023 was statistically higher than background dataset.
- vi. TDS (STT): p=.03
- vii. pH (STT): p=.935

#### c. MW-9

- i. Boron (TW): .419
- ii. Calcium (STT): p=.727

iii. Chloride (STT): p=.791

iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no obvious change

v. Sulfate (STT): p=.556vi. TDS (STT): p=.434vii. pH (STT): p=.783

- 3.) Added Detection Monitoring results to 'background' dataset, despite statistical difference. Reasons discussed at each bullet point above.
- 4.) Due to the stark difference in chemistry of MW-7 (upgradient) well with all downgradient wells (MW-8, MW-9, MW-10), interwell analysis will no longer be performed between the upgradient and downgradient wells. Intrawell analyses will be conducted for MW-8 and MW-9 and MW-10. Additionally, intrawell analysis will be completed for MW-7 to assess for changes in the upgradient watershed, even though the upgradient well is not assessed for Statistically Significant Increases (SSIs).
- 5.) Check all updated 'background' datasets for normality utilizing Robust Regression on order Statistics (ROS) to analyze datasets
  - a. Removed high non-detects from MW-7 Boron. Dataset does not appear normal, gamma, or log-normal distributed utizling ROS, but is very borderline as being normally distributed. Passes normality if the singe non-detect value is substituted for DL/2. Will process as normally distributed.
  - b. Removed high non-detects from MW-8 Boron. Dataset does not appear normal, gamma, or log-normal distributed utizling ROS, but is very borderline as being normally distributed. Passes normality if the singe non-detect value is substituted for DL/2. Will process as normally distributed.
  - c. MW-8 Field pH and Field Conductivity fail ROS normally distributed test. pH passes lognormal distribution, Field Conductivity does not appear to follow any distribution.
  - d. MW-9 Field pH and Field Conductivity fail ROS normally distributed test. Neither follow any distribution.
  - e. Remove pH reading from 7/11/17 for MW-7, MW-8, MW-9 datasets, suspect pH, faulty equipment, bad reading.
- 6.) Determine Upper Prediction Limits (UPLs) for each parameter at each well using 2-sample, UPL at p=95 with ProUCL. See Table 2
  - a. Utilize ROS Normal distribution for data with non-detects

Table 1: Previous UPLs				
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	110.75	105.15	44.46	TBD
Calcium (mg/L)	659.21	434.46	234.98	TBD
Chloride (mg/L)	137.06	1.87	20.97	TBD
Fluoride (mg/L)	0.11	0.11	0.11	TBD
pH (SU)	6.02 - 6.79	6.08 - 6.83	6.22 - 7.06	TBD
Sulfate (mg/L)	1537.59	852.16	525.81	TBD
Total Dissolved Solids (mg/L)	2863.07	1829.75	1260.69	TBD

Table 2: 2024 Updated UPLs Based on ProUCL only				
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	93.74	105	44.83	43.24
Calcium (mg/L)	676.5	436.4	233	248.6
Chloride (mg/L)	137.1	1.739	19.62	1.764
Fluoride (mg/L)	0.101	0.0751	0.0985	0.182
pH (SU)	6.00-6.77	6.07 – 6.81	6.24 – 7.03	6.50-7.33
Sulfate (mg/L)	1785	903.7	521.0	643.0
Total Dissolved Solids (mg/L)	3033	1902	1263	1252

Table 3: 2024 Updated UPLs Based on Unified Guidance				
Parameter	MW-7	MW-8	MW-9	MW-10
Boron (ug/L)	104.3	106.17	43.456	41.81138
Calcium (mg/L)	663.06	433.04	231.3	252.5454
Chloride				
(mg/L)	131.36	1.784	18.879	1.87491
Fluoride (mg/L)	0.1038	0.0787	0.09844	0.184238
pH (SU)	6.03 - 6.74	6.09 - 6.79	6.27 - 7.01	6.48 - 7.35
Sulfate (mg/L)	1729.9	891.16	515.6	655.738
Total Dissolved				
Solids (mg/L)	2963	1882.2	1252.06	1272.862

- 7.) Determine UPL for each parameter at each well using Table 19 of the unified guidance with 1 of 2 sample, 3 wells, 16 background samples, 7 COCs, semi-annual assessment. See Table 3.
- 8.) The 2 methodologies utilized to calculate UPLs exhibit similar results. The UPLs determined by the Unified Guidance will be utilized as the monitoring limits for the next 2 years. This methodology is specifically laid out in the Unified Guidance Rule and is therefore more defensible.