2020 ANNUAL GROUNDWATER MONITORING,

CORRECTIVE ACTION REPORT,

AND

STATISTICAL EVALUATION OF DETECTION MONITORING RESULTS

General Waste & Recycling, LLC Coal Combustion Residual Landfill

PREPARED BY:

526 Chestnut Street Virginia, Minnesota 55792 (218) 741-4290 NTS Project 6385CC

JANUARY 2021

TABLE OF CONTENTS

PURPOSE	2
INTRODUCTION	2
HYDROGEOLOGIC CONCEPTUAL MODEL	2
Geologic Units	.2
Hydrogeologic Setting	
ENVIRONMENTAL MONITORING SYSTEM	3
GROUNDWATER MONITORING SUMMARY	3
Groundwater Elevations and General Groundwater Flow Direction	.3
Quality Assurance and Data Validation	.3
Groundwater Results	.4
STATISTICAL ANALYSIS	4
CONCLBUSIONS AND RECOMMENDATIONS	4

FIGURES

Figure 1	Site Vicinity Map (USGS Topographic Map)

- Figure 2Site Location Map (Aerial Image)
- Figure 3 Site Detail Map
- Figure 4 Hydrograph
- Figure 5 May 29, 2020 Groundwater Flow Map
- Figure 6 October 5, 2020 Groundwater Flow Map

TABLES

- Table 1Groundwater Monitoring Well Details
- Table 2ACCR Appendix III Parameters
- Table 2B CCR Appendix IV Parameters
- Table 3A Lab Results-General Parameters
- Table 3B Lab Results-Metals
- Table 3C Lab Results-Radium
- Table 4Updated Upper Prediction Limits

APPENDICES

- Appendix A Analytical Laboratory Reports & Field Reports
- Appendix B May 2020 & October 2020 Statistical Analysis
- Appendix C 2020 Update of Background Dataset Rationale/Workflow

PURPOSE

The purpose of this document is to meet U.S. Code of Federal Regulation (CFR) requirements for General Waste & Recycling, LLC's (General Waste's) Keewatin, Minnesota, Coal Combustion Residual (CCR) landfill (the Facility) for preparation of an "Annual Groundwater Monitoring and Corrective Action Report" per CFR §257.90 (e).

INTRODUCTION

General Waste's Keewatin Facility consists of a composite lined industrial landfill (CCR Unit) and an unlined demolition debris disposal cell. The Facility is located on approximately 70 acres of land in: Township 57 North, Range 22 West, Section 25 of Itasca County, as shown on Figure 1, Site Vicinity Map and Figure 2, Site Location Map. The location of the active CCR Units and CCR groundwater monitoring system is shown on Figure 3, Site Detail Map.

HYDROGEOLOGIC CONCEPTUAL MODEL

Hydrogeologic conditions were investigated while conducting permitting activities for the Facility during 2013. An extensive investigation was completed at that time to refine the hydrologic model of the Facility in preparation of the installation of a groundwater monitoring system. The hydrogeologic investigation and groundwater monitoring system has been certified by a licensed professional engineer (PE) as meeting CRF 257.91 requirements and the certification has been posted on a CCR Website for the Facility per CFR 257.105(h)(3).

Geologic Units

Three (3) stratigraphic units have been identified for the hydrogeological conceptual model as follows:

- 1. Mine overburden stockpile unit that varies across the landfill footprint in depths ranging from 5 to 80 feet and consists of sand, silty-clayey sand, and sandy silty clay.
- 2. Native soil unit which consists of fine sand and silty sand near the top of the unit and generally grades to a silty medium grained sand with abundant gravel.
- 3. Mine tailings unit which consists of interlayered grey and black silt and fine sand sized taconite tailings. The mine tailings are approximately range from 10 to 26 feet thick and were placed in the tailings basin constructed directly to the west of the mine overburden stockpile.

The location of the mine overburden stockpile and the mine tailings (i.e., the Tailings Basin) are shown on Figure 2.

Hydrogeologic Setting

An unconfined aquifer exists below the Facility with the water table present within the mine overburden stockpile near the contact of the mine overburden stockpile unit with the native soil unit, except on the western edge of the permitted landfill boundary near MW-7 where the water table is within the tailings. Groundwater flow is generally to the east and southeast towards a ditch (Welcome Creek) located east

adjacent to the Facility. Welcome Creek is considered a groundwater divide and is a discharge point for shallow unconfined groundwater.

ENVIRONMENTAL MONITORING SYSTEM

The CCR Groundwater Monitoring System (GMS) consists of four (4) water table monitoring wells as follows:

- MW-7 is an up-gradient (with respect to general groundwater flow direction) monitoring well; and,
- MW-8, MW-9, and MW-10 (replaced MW-3R) are down-gradient (with respect to general groundwater flow direction) monitoring wells.

The groundwater monitoring system and active CCR Units (Cell A and Cell B) are shown on Figure 3. Groundwater monitoring well details are summarized in Table 1, including static water level and potentiometric surface data (i.e., groundwater elevation data). MW-3R was abandoned during landfill expansion activities during the 2019 summer. MW-10 was constructed down-gradient of the landfill to replace MW-3R in the GMS.

GROUNDWATER MONITORING SUMMARY

CCR groundwater monitoring has been conducted semi-annually during the Spring and Fall of each year (i.e., during April/May and October, respectively). Groundwater monitoring was performed on May 6th (MW-08 and MW-09), May 29th (MW-07 and MW-10), and October 5, 2020 (All locations) for CCR Appendix III parameters (Table 2A). MW-10 was also sampled for Appendix IV parameters (Table 2B) on May 29th to serve as a baseline dataset. Static water levels were obtained and groundwater elevations calculated for both groundwater monitoring events (Table 1). CCR groundwater monitoring will continue through the active life of the CCR Unit and post closure. CCR Unit post closure monitoring will be conducted for 30 years.

Groundwater Elevations and General Groundwater Flow Direction

Groundwater elevations summarized in Table 1 were graphed (see Figure 4 Hydrograph). Potentiometric surface (groundwater elevation) contour maps were created and general groundwater flow direction evaluated (Figures 5 and 6). Groundwater elevations fluctuated the most in the upgradient monitoring well MW-7, most likely due to MW-7 being more susceptible to precipitation events affecting surface water within the tailings basin and therefore within groundwater in the area. MW-7 is a relatively shallow well (i.e., screened depth 16.6 to 26.6 feet below the ground surface) installed within the tailings basin material (Figure 3).

Based on evaluation of the groundwater data, the general direction of groundwater flow is east-southeast (Figures 5, and 6) towards the ditch (Welcome Creek) and is consistent with historical groundwater flow. Evaluation of groundwater elevation trends will continue throughout the active life of the CCR Unit and post closure.

Quality Assurance and Data Validation

Quality control (QC) samples were included for the CCR monitoring events. QC samples include field blanks and field duplicates analyzed for the same parameters as the respective monitoring well. The QC

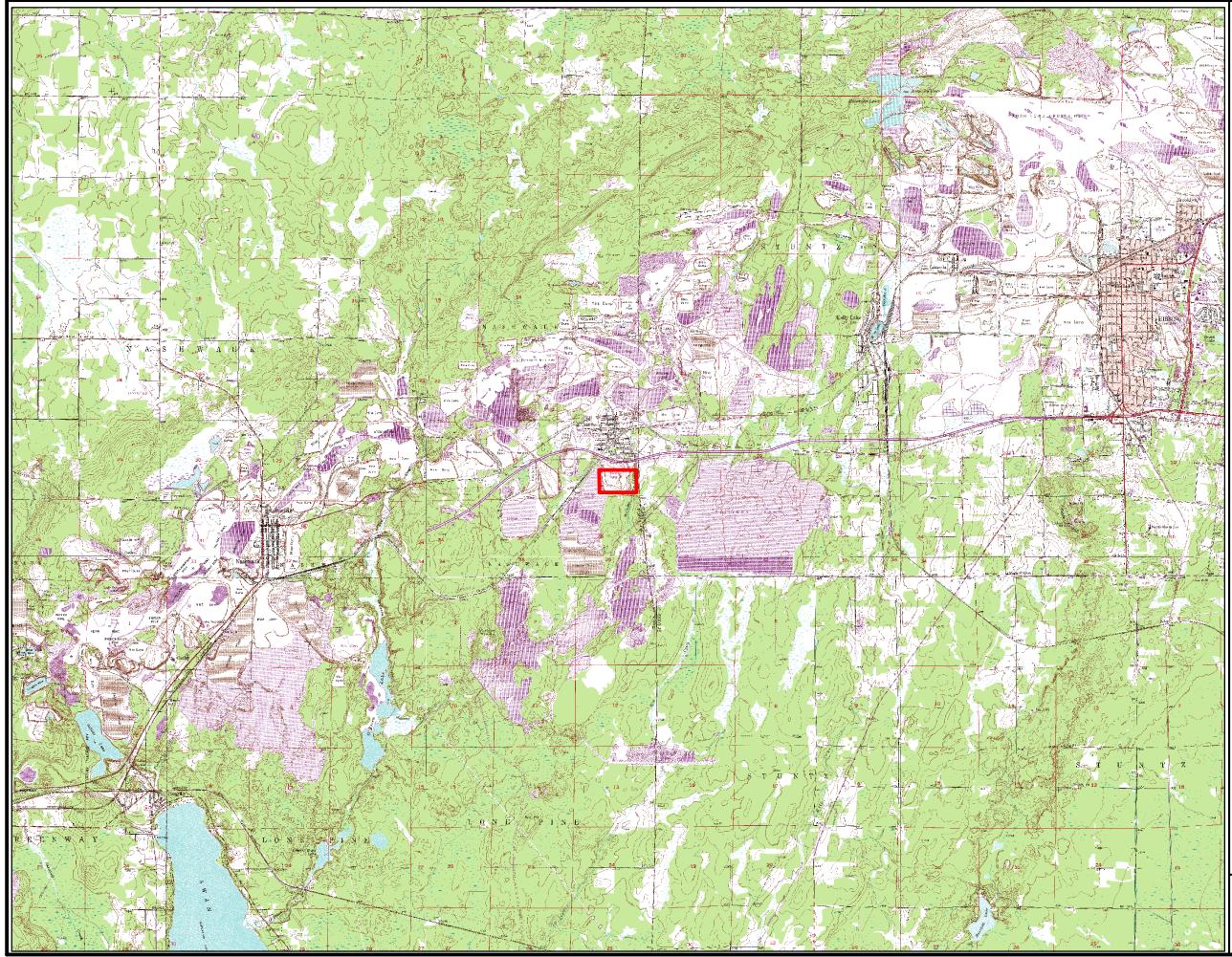
samples are used to determine the integrity of the field sampling procedures and the validity of the analytical results.

Groundwater Monitoring Results

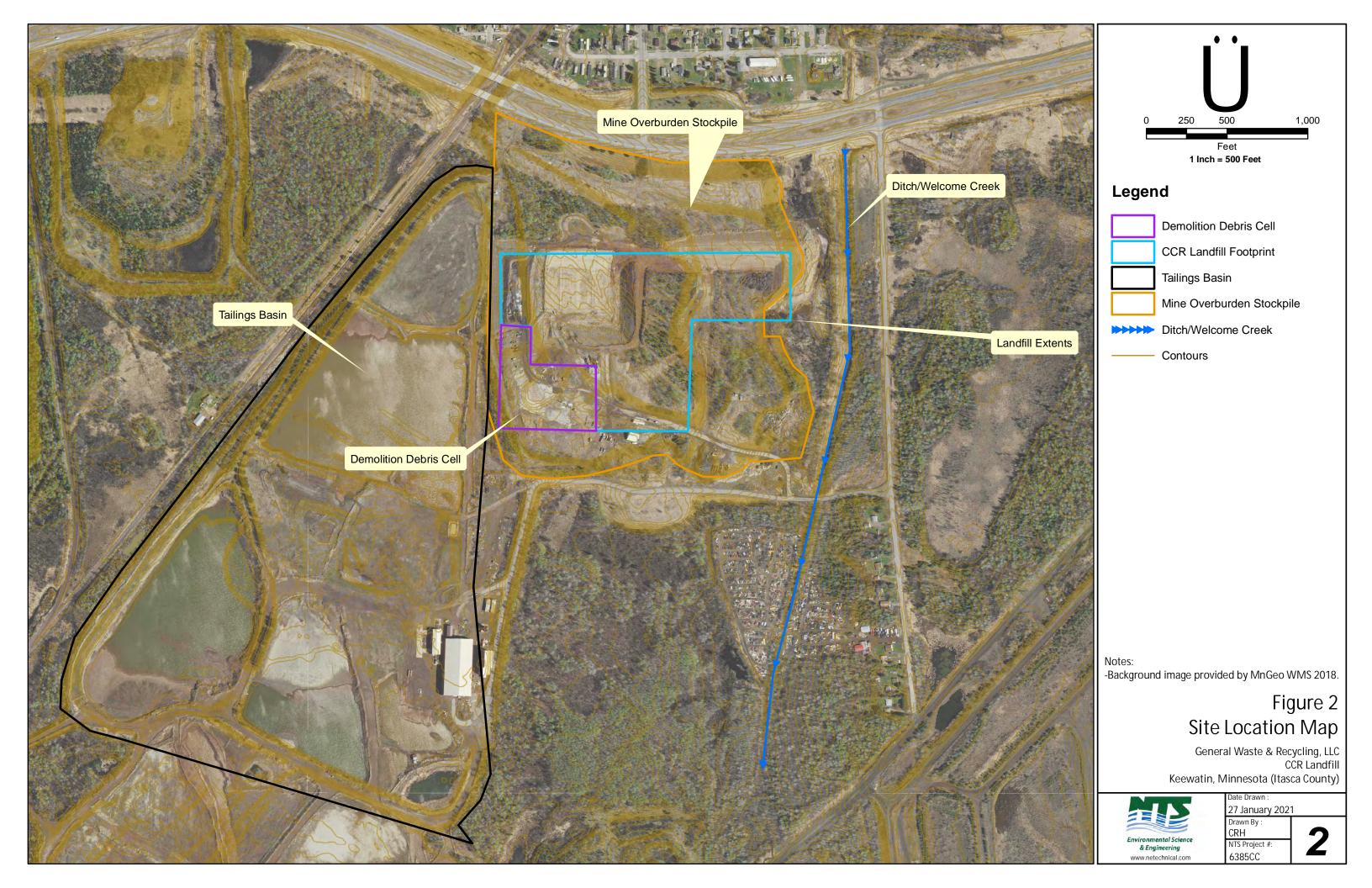
Groundwater monitoring results are summarized in Table 3 (CCR Lab Results Summary). Statistical analysis of the groundwater monitoring results, including determination of whether or not a Statistically Significant Increase (SSI) has been observed is presented below.

STATISTICAL ANALYSIS

Statistical Analysis was performed using the laboratory results collected during 2020 and guided by the Statistical Analysis Plan (SAP) written for the facility. No SSIs were determined to have occurred based on the statistical evaluation of 2020 groundwater monitoring results. The statistical evaluation cannot be deemed complete since the monitoring location MW-3R is unable to be monitored. Until a statistically significant dataset (8 or more samples) for MW-10 is collected, statistical analysis cannot be completed. The statistical analyses completed for the April and October events are presented in Appendix B.

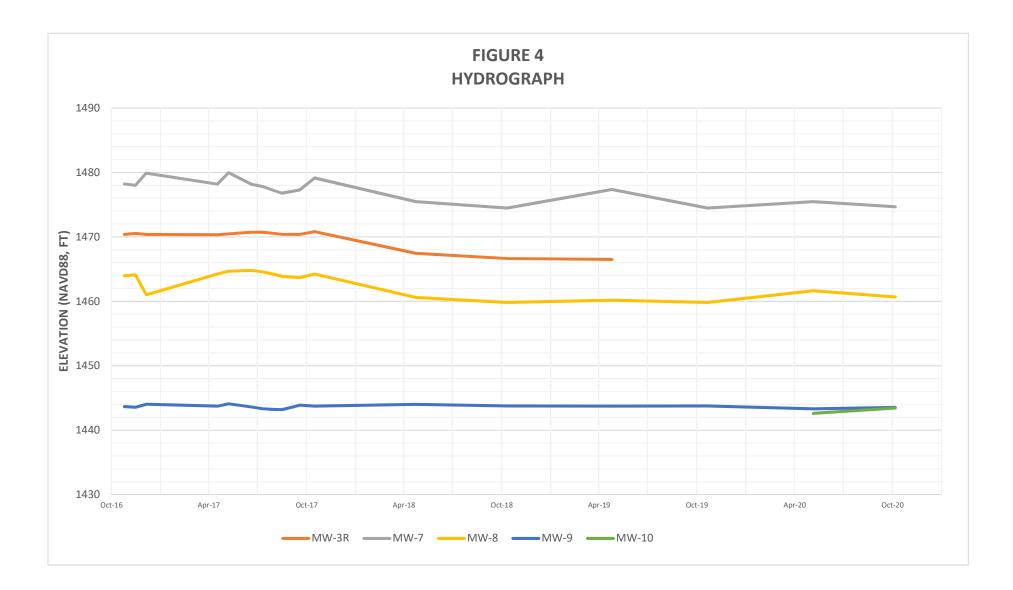

Following the SAP, the detection monitoring data collected in 2018 and 2019 was assessed and incorporated into the background dataset. After assessing the detection monitoring data, it was determined that intrawell assessment for MW-8 and MW-9 is more appropriate and will provide a higher statistical power than an interwell analysis (comparing upgradient well MW-7 parameters to downgradient wells MW-8 and MW-9 data). The groundwater monitored in MW-7 is very distinct from the groundwater monitored in MW-8 and MW-9, with much higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) observed in the upgradient well MW-7.

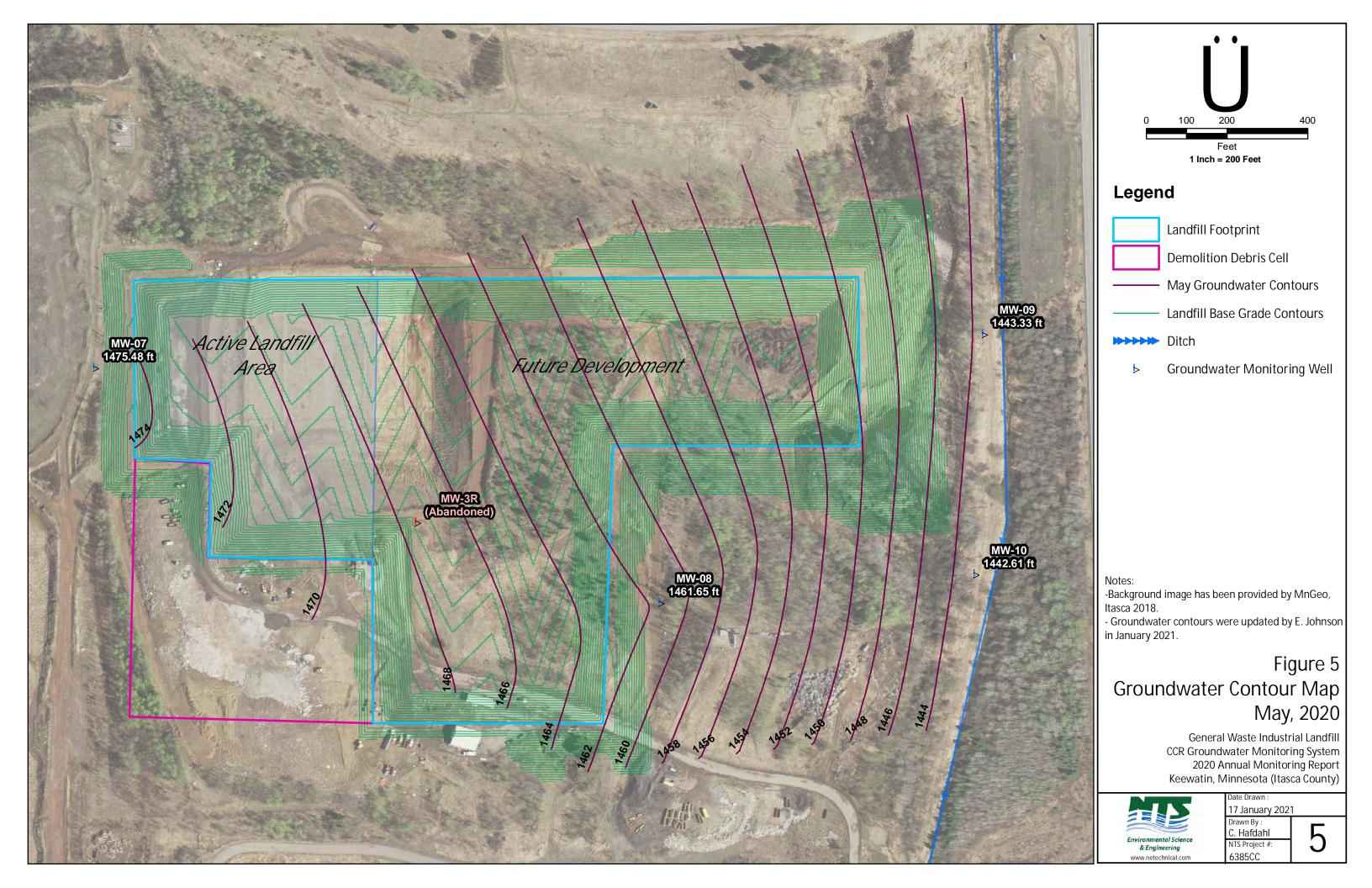
The rationale and workflow utilized to update the background dataset and adjust Upper Prediction Limits (UPLs) for 2020 and 2021 monitoring can be found in Appendix C. The updated Upper Prediction Limits (UPLs) can be seen in Table 4.

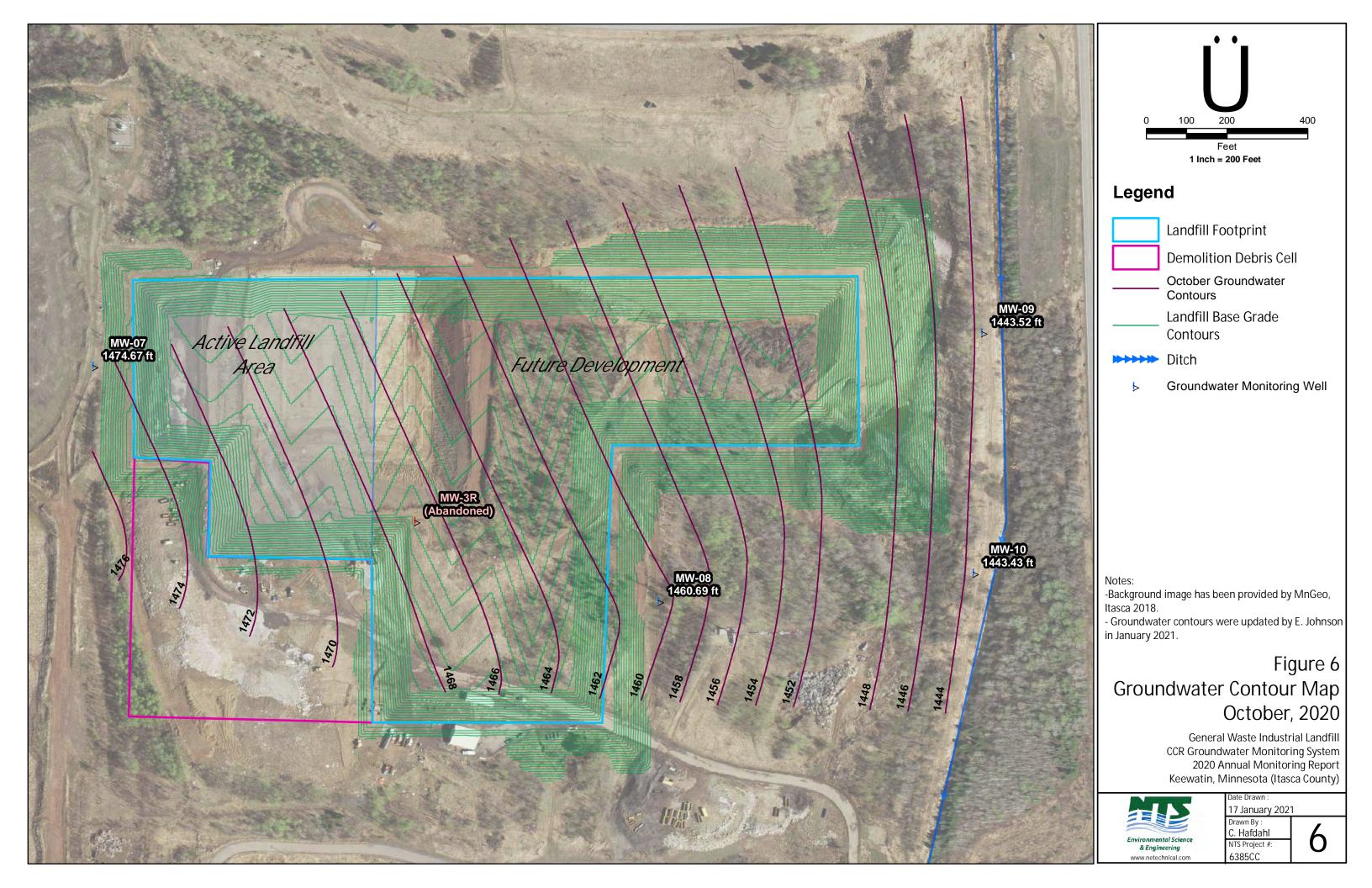

CONCLUSIONS AND RECOMMENDATIONS

Review of the collected data indicates that a SSI of CCR Appendix III parameter concentrations has not occurred in the downgradient monitoring wells MW-08 and MW-09 (see Appendix B). Detection monitoring should continue as described in the Statistical Analysis Plan. MW-10 should be monitored a minimum of 8 events before completing statistical analysis. The Groundwater Monitoring System will be considered incomplete as determined by CRF 257.91 which requires a minimum of 3 down-gradient wells until MW-10 is able to be fully evaluated. SSI evaluations will continue but will be flagged as only including 2 downgradient locations until MW-10 can be included in the analysis.

FIGURES


0 3,000 6,000 12,000 Feet 1 Inch = 6,000 Feet
Legend
Project Location
<image/>
Notes:
Background imagery provded by MnGeo WMS.
Figure 1
Site Vicinity Map General Waste & Recycling, LLC
CCR Landfill Keewatin, Minnesota (Itasca County)
Date Drawn :
27 January 2021 Drawn By :
Environmental Science & Engineering www.netechnical.com





o) 00	600
		300 Feet	
Legen	d		
	Demolition D	ebris Cell	
	Landfill Footp	print	
	Leachate Coll	ection Pad	
	Leachate Coll	ection Pipe	
	Landfill Base	Grade Conto	ours
	Ditch		
⊳	Groundwater	⁻ Monitoring	Well
⊳	Abandonend	Monitoring	Well
(Leachate Pun	np Access Va	ult
Notes: Backgrou	nd image provide	d by MnGeo It	asca 2018.
		Fig	ure 3
	Site	Detail	Мар
	CCR Ground	Waste Industr water Monitor 1innesota (Itas	ing System
		Date Drawn : 27 January 202	1
& E	intental Science Engineering Netechnical.com	Drawn By : C. Hafdahl NTS Project #: 6385CC	3

TABLES

TABLE 1GROUNDWATER MONITORING WELL DETAILSGENERAL WASTE AND RECYCLING CCR LANDFILL

	MW	/-3R	MV	MW-7 MW-8		MW-9		MW-10		
MDH Unique Well #	797	239	817979		817978		817980		847087	
Northing (UTM NAD83)	52483	332.87	5248449.356		5248271.719		52484	74.904	5248293.27	
Easting (Zone 15 Meters)	4942	67.27	49402	24.588	49445	51.676	49469	5.922	49468	39.54
Installation Date	7/9)/15	9/30/	/2016	9/29/	/2016	9/30/	/2016	May	-20
Ground Elev. (ft)	153	0.10	149	3.62	149	1.63	145	2.93	144	9.8
Riser Top Elev. (ft)	153	2.29	149	6.13	149	4.41	1454	4.72	145	2.6
Total Depth (ft)	75	5.0	26	5.6	41	3	18	3.9	18	.2
Screened Interval (ft)	65	- 75	16.6	- 26.6	31.3	- 41.3	8.9 -	18.9	8.2-2	18.2
Screened Elevation	1465.10	- 1455.10	1477.02	- 1467.02	1460.33	- 1450.33	1444.03 -	- 1434.03	1444-40 -	1454.40
Date of Measurement	Static Level	GW Elev.	Static Level	GW Elev.						
25-Oct-16	61.90	1470.39	17.92	1478.21	30.42	1463.99	11.07	1443.65		
15-Nov-16	61.75	1470.54	18.11	1478.02	30.31	1464.10	11.16	1443.56		
5-Dec-16	61.90	1470.39	16.22	1479.91	33.40	1461.01	10.69	1444.03		
17-Apr-17	61.95	1470.34	17.93	1478.20	30.18	1464.23	10.98	1443.74		
8-May-17	61.82	1470.47	16.16	1479.97	29.72	1464.69	10.62	1444.10		
20-Jun-17	61.56	1470.73	17.97	1478.16	29.60	1464.81	11.11	1443.61		
11-Jul-17	61.57	1470.72	18.32	1477.81	29.84	1464.57	11.40	1443.32		
1-Aug-17	61.74	1470.55	18.95	1477.18	30.21	1464.20	11.50	1443.22		
16-Aug-17	61.90	1470.39	19.34	1476.79	30.53	1463.88	11.53	1443.19		
18-Sep-17	61.89	1470.40	18.85	1477.28	30.74	1463.67	10.84	1443.88		
16-Oct-17	61.47	1470.82	16.97	1479.16	30.18	1464.23	11.00	1443.72		
23-Apr-18	64.84	1467.45	20.64	1475.49	33.81	1460.60	10.71	1444.01		
11-Oct-18	65.65	1466.64	21.65	1474.48	34.57	1459.84	10.97	1443.75		
25-Apr-19	65.79	1466.50	18.76	1477.37	34.23	1460.18	10.99	1443.73		
21-Oct-19			21.65	1474.48	34.57	1459.84	10.97	1443.75		
6-May-20			20.65	1475.48	32.76	1461.65	11.39	1443.33	9.99	1442.61
6-Oct-20			21.46	1474.67	33.72	1460.69	11.2	1443.52	9.17	1443.43

TABLE 2A Appendix III Parameters							
Parameter	MCL						
Boron	NA						
Calcium	NA						
Chloride	NA						
Fluoride	4.0 mg/L						
pH	NA						
Sulfate	NA						
Total Dissolved Solids (TDS)	NA						

TABLE 2B Appendix	x IV Parameters		
Parameter	MCL		
Antimony	0.006 mg/L		
Arsenic	0.01 mg/L		
Barium	2.0 mg/L		
Beryllium	0.004 mg/L		
Cadmium	0.10 mg/L		
Chromium	0.10 mg/L		
Cobalt	NA		
Fluoride	4.0 mg/L		
Lead	0.015 mg/L		
Lithium	NA		
Mercury	0.002 mg/L		
Molybdenum	NA		
Selenium	0.05 mg/L		
Thallium	0.002 mg/L		
Radium 226 and 228 combined	5 pCi/L		

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Chloride	mg/L	25-Oct-16	1.1	109	1	606		606	<1.0
		15-Nov-16	2.2	105	1.2	4.1		4.3	<1.0
		5-Dec-16	1.6	102	1.2	5.8		5.8	<1.0
		17-Apr-17	1.1	63.8	1.1	6.6		7.6	<1.0
		8-May-17	1.1	52.2	<1.0	14.9		13.9	<1.0
		20-Jun-17	1.1	52.5	1	8.9		9	<1.0
		11-Jul-17	1.1	55.6	1	17.6		17.5	<1.0
		1-Aug-17	1.2	61.0	1.3	20.8		20.3	<1.0
		16-Aug-17	1.2	67.5	1.2	19		19.8	<1.0
		18-Sep-17	1.2	82.4	1	10.4		10.7	<1.0
		16-Oct-17	1.1	52.0	1.2	8.7		8.8	<1.0
		4/23/2018	1.5	124	<1.2	2.8			
		10/11/2018	2	91.4	1.4	8.4		8.4	<1.0
		4/25/2019	2.8	61.4	1.3	2.9		2.8	<1.0
		10/21/2019		37.4	1.4	6		5.9	<1.0
		6-May-20			<1.0	2.1			
		29-May-20		15.8			1.4		
		5-Oct-20		19.4	<1.0	1.5	1.6		
Fluoride	mg/L	25-Oct-16	< 0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		15-Nov-16	< 0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		5-Dec-16	< 0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		17-Apr-17	0.11	0.11	< 0.10	< 0.10		<0.10	<0.10
		8-May-17	< 0.10	< 0.10	< 0.10	< 0.10		<0.10	<0.10
		20-Jun-17	< 0.10	<0.10	< 0.10	< 0.10		<0.10	<0.10
		11-Jul-17	< 0.10	<0.10	< 0.10	< 0.10		<0.10	<0.10
		1-Aug-17	< 0.10	<0.10	< 0.10	< 0.10		<0.10	<0.10
		16-Aug-17	< 0.10	<0.10	< 0.10	< 0.10		< 0.10	<0.10
		18-Sep-17	0.1	<0.10	< 0.10	< 0.10		<0.10	<0.10
		16-Oct-17	< 0.10	<0.10	< 0.10	< 0.10		<0.10	<0.10
		4/23/2018	0.086	0.08	0.053	0.075			
		10/11/2018	< 0.1	<0.1	<0.1	<0.1		< 0.10	<0.10
		4/25/2019	< 0.1	<0.1	<0.1	<0.1		< 0.10	<0.10
		10/21/2019		<0.1	<0.1	<0.1		< 0.10	<0.10
		6-May-20			<0.1	<0.1			
		29-May-20		<0.1			0.14		
		5-Oct-20			<0.1	<0.1	0.14		
Sulfate	mg/L	25-Oct-16	1980	937	823	462		458	<2.0
		15-Nov-16	1820	929	764	475		470	<2.0
		5-Dec-16	1840	903	778	460		460	<2.0
		17-Apr-17	1710	551	780	454		441	<2.0
		8-May-17	1760	712	731	438		433	<2.0

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Sulfate	mg/L	20-Jun-17	1810	746	672	459		458	<2.0
		11-Jul-17	1870	548	707	406		412	<2.0
		1-Aug-17	1830	511	700	339		342	<2.0
		16-Aug-17	1840	447	703	354		348	<2.0
		18-Sep-17	1890	441	719	432		436	<2.0
		16-Oct-17	1840	675	1010	443		432	<2.0
		4/23/2018	1520	488	617	481			
		10/11/2018	1550	695	589	460		461	<2.0
		4/25/2019	1300	988	562	423		441	<2.0
		10/21/2019		1120	630	437		434	<2.0
		6-May-20			547	425			
		29-May-20		1420			360		
		5-Oct-20		1140	594	467	180		
Total Dissolved Solids	mg/L	25-Oct-16	3300	2070	1740	1070		1090	<10.0
		15-Nov-16	3130	2090	1710	1190		1140	<10.0
		5-Dec-16	3110	1940	1710	1100		1110	<10.0
		17-Apr-17	3160	1500	1760	1180		1120	<10.0
		8-May-17	3010	1610	1630	1050		1040	<10.0
		20-Jun-17	3190	1700	1510	1090		1120	<10.0
		11-Jul-17	3040	1380	1550	1010		1020	<10.0
		1-Aug-17	3290	1300	1560	864		888	12
		16-Aug-17	3360	1300	1610	979		957	32
		18-Sep-17	2580	1310	1580	1100		1000	<10.0
		16-Oct-17	3110	1380	1800	993		1010	<10.0
		4/23/2018	2870	1420	1400	1080			
		10/11/2018	2850	1600	1350	1100		1120	<10.0
		4/25/2019	2560	1970	1380	1020		1050	<10.0
		10/21/2019		2250	1490	1100		1090	<10.0
		6-May-20		2590	1460	1100			
		29-May-20					806		
		5-Oct-20		2370	1500	1200	556		
pH, Lab	mg/L	25-Oct-16	7.3	7.4	7.4	7.4		7.3	6.3
		15-Nov-16	7.3	7.2	7.2	7.2		7.2	6.0
		5-Dec-16	6.8	6.6	6.6	6.9		6.8	7.1
		17-Apr-17	7.3	7.4	7.3	7.3		7.3	6.1
		8-May-17	7.2	7.1	7.1	7.2		7.2	6.2
		20-Jun-17	7.1	7.1	7.2	7.2		7.2	5.9
		11-Jul-17	7.1	7.1	7.1	7.2		7.2	6.0

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
pH, Field	mg/L	1-Aug-17	7.1	7.1	7.2	7.2		7.2	6.0
		16-Aug-17	7.1	7.2	7.2	7.2		7.2	5.8
		18-Sep-17	7.2	7.1	7.2	7.2		7.2	5.8
		16-Oct-17	7.3	7.2	7.2	7.3		7.3	6.0
		4/23/2018	6.8	7	7	6.3			
		10/11/2018	7.2	7.2	7.2	7.2		7.2	6.1
		4/25/2019	7.4	7.4	7.2	7.5		7.3	6.2
		10/21/2019		7.2	7.1	7.2		7.2	5.7
		6-May-20			7.4	7.4			
		29-May-20		7.5			7.7		
		5-Oct-20		7.1	7.2	7.2	7.4		
		25-Oct-16	6.48	6.34	6.38	6.54			
		15-Nov-16	6.89	6.46	6.62	6.81			
		5-Dec-16	6.53	6.35	6.35	6.59			
		17-Apr-17	6.79	6.52	6.49	6.34			
		8-May-17	6.76	6.67	6.73	6.97			
		20-Jun-17	6.78	6.66	6.74	6.96			
		11-Jul-17	4.57	4.63	5.03	5.34			
		1-Aug-17	6.52	6.63	6.71	6.89			
		16-Aug-17	6.63	6.58	6.68	6.92			
		18-Sep-17	6.47	6.31	6.37	6.59			
		16-Oct-17	6.74	6.48	6.48	6.71			
		4/23/2018	6.45	6.34	6.40	6.60			
		10/11/2018	6.27	6.29	6.34	6.52			
		10/21/2019		6.25	6.28	6.53			
		6-May-20			6.36	6.53			
		29-May-20		6.27			6.91		
		5-Oct-20		6.21	6.29	6.50	6.66		
Specific Conductance,	µmhos/cm	25-Oct-16	3596	2570	2146	1460			
Field		15-Nov-16	3359	2534	2088	1586			
		5-Dec-16	3314	2330	2106	1530			
		17-Apr-17	3351	1874	2090	1541			
		8-May-17	3366	2090	2063	1494			
		20-Jun-17	3359	1995	1898	1514			
		11-Jul-17	3464	1802	1974	1436			
		1-Aug-17	3433	1773	1961	1321			
		16-Aug-17	3430	1806	1959	1333			
		18-Sep-17	3475	1815	1978	1477			
		16-Oct-17	3422	2015	2360	1469			

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Specific Conductance,	µmhos/cm	4/23/2018	3131	2008	1894	1562			
Field		10/11/2018	3128	1428	1793	1526			
		4/25/2019	2983	2501	1821	1522			
		10/21/2019		2634	1917	1531			
		6-May-20			1821	1486			
		5-Oct-20		2565	1869	1575	818		

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Antimony	μg/L	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	< 0.50
Dissolved (ONE E	EVENT ONLY)	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
		8-May-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
		20-Jun-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
		11-Jul-17	<0.50	<0.50	< 0.50	< 0.50		<0.50	<0.50
		1-Aug-17	<0.50	<0.50	< 0.50	< 0.50		<0.50	<0.50
		16-Aug-17	<1.0	<1.0	<1.0	<1.0		<1.0	<0.50
		18-Sep-17	<1.0	<1.0	<1.0	<1.0		<1.0	<0.50
		16-Oct-17	12	<1.0	<1.0	<1.0		<1.0	<0.50
		29-May-20					<1.0		
Arsenic	μg/L	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
Dissolved (ONE E	EVENT ONLY)	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
		8-May-17	<2.0	<2.0	2.7	<2.0		<2.0	<0.50
		20-Jun-17	<2.0	38.7	<2.0	<2.0		<2.0	<0.50
		11-Jul-17	< 0.50	3.2	< 0.50	< 0.50		< 0.50	<0.50
		1-Aug-17	< 0.50	3.2	0.99	< 0.50		<0.50	<0.50
		16-Aug-17	<1.0	2.7	2.7	<1.0		<1.0	<0.50
		18-Sep-17	<1.0	<1.0	<1.0	<1.0		<1.0	< 0.50
		16-Oct-17	<1.0	<1.0	<1.0	<1.0		<1.0	<0.50
		29-May-20					<1.0		
Barium		17-Apr-17	<40.0	187	<40.0	61.5		59.9	<10.0
Dissolved (ONE E	µg/L	17-Apr-17	<40.0	51.5	<40.0	62.8		65.6	<10.0
Dissorted (ONE I	i entroneri)	8-May-17	42.4	48.6	62.5	64.5		63.8	<10.0
		20-Jun-17	18.5	48.0	40.9	61.3		59.3	<10.0
		11-Jul-17	18.7	1740	38.8	58.5		57.2	<10.0
		1-Aug-17	<40.0	165	59.4	59.0		64.5	<10.0
		16-Aug-17	17.0	105	86.2	54.0		53.1	<10.0
		18-Sep-17	17.0	61.1	24.7	54.0		55.3	<0.50
		16-Oct-17	41.4	40.1	34.0	60.5		60.6	<0.50
		29-May-20	41.4	40.1	34.0	00.5	50.7	00.0	~0.50
		29-1v1ay-20					50.7		
Beryllium	μg/L	17-Apr-17	<0.80	< 0.80	< 0.80	<0.80		<0.80	<0.20
Dissolved (ONE E		17-Apr-17	< 0.80	<0.80	< 0.80	< 0.80		< 0.80	<0.20
		8-May-17	< 0.80	<0.80	< 0.80	< 0.80		< 0.80	<0.20
		20-Jun-17	< 0.80	6.9	0.28J	< 0.80		< 0.80	<0.20
		11-Jul-17	0.48J	0.72	0.23	0.125		0.098J	<0.20
		1-Aug-17	<0.20	0.43	0.15J	<0.20		<0.20	<0.20
		16-Aug-17	<0.40	0.40J	0.34J	<0.40		<0.40	<0.20
		18-Sep-17	<0.40	0.18J	<0.40	<0.40		<0.40	<0.20
		16-Oct-17	<0.40	<0.40	0.12J	<0.40	L	<0.40	<0.20
		29-May-20					< 0.30		
		20							
	l					l		l	l

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Boron	μg/L	17-Apr-17	<160	<160	<160	<160		<160	<40.0
Dissolved (ONE	EVENT ONLY)	17-Apr-17	<160	<160	<160	<160		<160	<40.0
		8-May-17	<160	<160	<160	<160		<160	<40.0
		20-Jun-17	<160	<160	<160	<160		<160	<40.0
		11-Jul-17	124	76.4	70.7	<40.0		<40.0	<40.0
		1-Aug-17	123	75.9	69.5	<40.0		<40.0	<40.0
		16-Aug-17	114	<80.0	<80.0	<80.0		<80.0	<40.0
		18-Sep-17	122	<80.0	<80.0	<80.0		<80.0	<40.0
		16-Oct-17	126	87.8	<80.0	<80.0		<80.0	<40.0
		4/23/2018	123	73.8	79.5	43.3			
		10/11/2018	103	70.8	64.7	<40		<40.0	<40.0
		4/25/2019	96	69.7	75.8	<50		<50.0	<10.0
		10/21/2019		66.9	70.5	<40		<40.0	<40.0
		6-May-20			71.9	<40		<40	<40
		29-May-20		64.7			<40	<40	<40
		5-Oct-20		71.7	70.3	42.9	<40		
Cadmium	μg/L	17-Apr-17	<0.80	< 0.80	< 0.80	< 0.80		<0.80	<0.20
Dissolved (ONE	1	17-Apr-17	<0.80	< 0.80	< 0.80	< 0.80		<0.80	<0.20
		8-May-17	<0.80	< 0.80	< 0.80	< 0.80		<0.80	<0.20
		20-Jun-17	<0.80	1.3	< 0.80	< 0.80		<0.80	<0.20
		11-Jul-17	<0.20	0.15J	<0.20	<0.20		<0.20	< 0.20
		1-Aug-17	<0.20	0.13J	<0.20	<0.20		<0.20	<0.20
		16-Aug-17	0.21J	0.24J	<0.40	<0.40		<0.40	<0.20
		18-Sep-17	<0.20	0.16J	<0.40	<0.40		<0.40	<0.20
		16-Oct-17	2.0	<0.40	<0.40	<0.40		<0.40	< 0.20
		29-May-20					<0.2		
		5							
Calcium	mg/L	17-Apr-17	563	350	384	197		192	< 0.50
Dissolved (ONE	-		617	347	412	208		216	< 0.50
		8-May-17	588	404	402	203		209	<1.0
		20-Jun-17	607	524	373	211		207	< 0.50
		11-Jul-17	628	355	387	199		199	< 0.50
		1-Aug-17	650	375	415	189		185	< 0.50
		16-Aug-17	609	341	388	179		178	< 0.50
		18-Sep-17	538	316	369	192		191	<100
		16-Oct-17	585	357	448	192		191	<100
		4/23/2018	551	371	371	229			
		10/11/2018	532	400	331	193		192	<0.10
		4/25/2019	484	481	343	206		203	<0.50
		10/21/2019		539	354	200		203	< 0.50
		6-May-20			334	206		203	< 0.50
		29-May-20		583		200	168	616	<0.50
		5-Oct-20		521	360	225	108	126	<0.50
		5-001-20		341	500	223	124	120	~0.50

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Chromium	μg/L	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
Dissolved (ONE l	EVENT ONLY)	8-May-17	17.6	<4.0	10.7	<4.0		<4.0	<1.0
		20-Jun-17	<4.0	309	4.2	<4.0		<4.0	<1.0
		1-Aug-17	<1.0	20.2	7.7	<1.0		1.3	<1.0
		16-Aug-17	<2.0	18.0	17.7	<2.0		<2.0	<1.0
		18-Sep-17	<2.0	5.5	2.1	<2.0		<2.0	<1.0
		16-Oct-17	17.0	<2.0	4.2	<2.0		<2.0	<1.0
		29-May-20					<1.5		
Cobalt	μg/L	17-Apr-17	7.3	10.2	5.8	< 0.80		<0.80	<0.20
Dissolved (ONE l	EVENT ONLY)	17-Apr-17	4.6	< 0.80	4.7	< 0.80		<0.80	<0.20
		8-May-17	9.1	2.5	8.2	< 0.80		<0.80	<0.20
		20-Jun-17	5.3	97.9	6.3	< 0.80		<0.80	<0.20
		11-Jul-17	4.9	9.4	6.2	<0.20		<0.20	<0.20
		1-Aug-17	3.7	7.3	6.1	<0.20		0.28	<0.20
		16-Aug-17	4.8	6.2	8.4	<0.20		<0.40	<0.20
		18-Sep-17	4.4	2.5	5.3	<0.40		<0.40	<0.20
		16-Oct-17	13.0	0.86	6.6	<0.40		<0.40	<0.20
		29-May-20	15.0	0.80	0.0	~0.40	0.8	~0.40	~0.20
		29-1v1ay-20					0.8		
T 1	(T	17.4.17	-2.0	- /	-2.0	-2.0		-2.0	-0.50
Lead	μg/L	17-Apr-17	<2.0	5.6	<2.0	<2.0		<2.0	<0.50
Dissolved (ONE 1	EVENT ONLY)	17-Apr-17	<2.0	<2.0	<2.0	<2.0		<2.0	<0.50
		8-May-17	<2.0	<2.0	2.5	<2.0		<2.0	<0.50
		20-Jun-17	<2.0	77.0	<2.0	<2.0		<2.0	<0.50
		11-Jul-17	<0.50	5.3	1.1	<0.50		<0.50	<0.50
		1-Aug-17	<0.50	4.6	1.9	< 0.50		0.60	<0.50
		16-Aug-17	<1.0	3.8	3.3	<1.0		<1.0	<0.50
		18-Sep-17	<1.0	1.4	<1.0	<1.0		<1.0	<0.50
		16-Oct-17	2.2	<1.0	<1.0	<1.0		<1.0	<0.50
		29-May-20					<0.50		
Lithium	μg/L	17-Apr-17	<20.0	26.5	32.7	<20.0		<20.0	<5.0
Dissolved (ONE I	EVENT ONLY)	17-Apr-17	<20.0	<20.0	27.9	<20.0		<20.0	<5.0
		8-May-17	<20.0	<20.0	30.3	<20.0		<20.0	<5.0
		20-Jun-17	<20.0	150	26.8	<20.0		<20.0	<5.0
		11-Jul-17	12.5	25.2	27.7	11.6		11.0	<5.0
		1-Aug-17	12.6	22.9	29.6	10.9		12.2	<5.0
		16-Aug-17	<20.0	18.3	29.7	10.7		10.5	<5.0
		18-Sep-17	14.5	19.9	29.7	14.3		14.5	<5.0
		16-Oct-17	17.0	19.5	28.1	15.7		16.4	<5.0
		29-May-20					<10.0		
									1
Mercury	μg/L	17-Apr-17	< 0.20	<0.20	<0.20	<0.20		< 0.20	<0.20
Dissolved (ONE l		17-Apr-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
	,	8-May-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		y	<0.20	0.46	<0.20	<0.20		<0.20	<0.20

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Mercury	μg/L	11-Jul-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		1-Aug-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		16-Aug-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		18-Sep-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		16-Oct-17	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20
		29-May-20					< 0.10		
Molybdenum	μg/L	17-Apr-17	2.3	<1.2	<1.2	<1.2		<1.2	< 0.30
Dissolved (ONE)	EVENT ONLY)	17-Apr-17	<1.2	<1.2	<1.2	<1.2		<1.2	< 0.30
		8-May-17	2.9	<1.2	<1.2	<1.2		<1.2	< 0.30
		20-Jun-17	<1.2	2.8	<1.2	<1.2		<1.2	< 0.30
		11-Jul-17	0.43	0.55	< 0.30	< 0.30		< 0.30	< 0.30
		1-Aug-17	< 0.30	0.39	0.33	< 0.30		<0.30	< 0.30
		16-Aug-17	<0.60	<0.60	<0.60	<0.60		<0.60	< 0.30
		18-Sep-17	<0.60	<0.60	<0.60	<0.60		<0.60	< 0.30
		16-Oct-17	3.1	<0.60	<0.60	<0.60		<0.60	< 0.30
		29-May-20					0.98		
Selenium	μg/L	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
Dissolved (ONE	EVENT ONLY)	17-Apr-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		8-May-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		20-Jun-17	<4.0	<4.0	<4.0	<4.0		<4.0	<1.0
		11-Jul-17	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
		1-Aug-17	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
		16-Aug-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		18-Sep-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		16-Oct-17	<2.0	<2.0	<2.0	<2.0		<2.0	<1.0
		29-May-20					<1.0		
Thallium	μg/L	17-Apr-17	< 0.80	< 0.80	< 0.80	<0.80		<0.80	< 0.20
Dissolved (ONE)	EVENT ONLY)	17-Apr-17	< 0.80	< 0.80	<0.80	<0.80		<0.80	< 0.20
		8-May-17	< 0.80	< 0.80	< 0.80	<0.80		<0.80	<0.20
		20-Jun-17	< 0.80	2.3	0.48j	<0.80		<0.80	<0.20
		11-Jul-17	<0.20	0.19J	0.04J	<0.20		<0.20	<0.20
	1	1-Aug-17	<0.20	0.15J	0.053J	0.0035J		0.012J	<0.20
		16-Aug-17	<0.40	0.14J	0.12J	<0.40		<0.40	<0.20
		18-Sep-17	<0.40	0.069J	0.069J	<0.40		<0.40	<0.20
	1	16-Oct-17	0.10J	0.052J	0.038J	<0.40		<0.40	<0.20
		29-May-20					< 0.02	1	1

TABLE 3C CCR COMBINED RADIUM 226 AND 228 SUMMARY GENERAL WASTE AND RECYCLING, INC.

PARAMETER	UNITS	DATE	MW-3R	MW-7	MW-8	MW-9	MW-10	Field Dup	Field Blank
Combined Radium 226/228	pCi/L	17-Apr-17	1.32 ± 0.53	<0.57	0.60 ± 0.56	<0.55		0.91 ± 0.64	1.06 ± 0.52
Combined Radium 226/228	pCi/L	8-May-17	1.08 ± 0.70	1.78 ± 0.80	4.25 ± 1.07	<0.88		1.51 ± 0.66	<0.59
Combined Radium 226/228	pCi/L	20-Jun-17	2.06 ± 0.84	0.90 ± 0.93	1.22 ± 0.84	0.73 ± 0.79		<0.68	<1.0
Combined Radium 226/228	pCi/L	11-Jul-17	<0.78	1.57 ± 1.34	1.26 ± 1.23	<0.75		2.16 ± 1.23	<0.69
Combined Radium 226/228	pCi/L	1-Aug-17	1.24 ± 0.54	1.24 ± 0.68	0.85 ± 0.56	0.91 ± 0.65		1.54 ± 0.57	0.76 ± 0.48
Combined Radium 226/228	pCi/L	16-Aug-17	0.68 ± 0.515	0.90 ± 0.48	0.92 ± 0.59	1.15 ± 0.51		1.59 ± 0.73	<0.62
Combined Radium 226/228	pCi/L	18-Sep-17	0.789 ± 1.33	2.89 ± 1.73	2.43 ± 1.83	2.17 ± 1.63		1.66 ± 1.49	0.805 ± 1.27
Combined Radium 226/228	pCi/L	16-Oct-17	1.62 ± 1.23	3.40 ± 1.68	3.11 ± 1.42	1.95 ± 1.15		2.18 ± 1.33	1.10 ± 1.06

TABLE 4 UPDATED UPLS BASED ON UNIFIED GUIDANCE TABLE 19 GENERAL WASTE AND RECYCLING, LLC

PARAMETER	MW-7	MW-3R	MW-8	MW-9
Boron (ug/L)	110.01	n/a	119.29	50
Calcium (mg/L)	579.98	n/a	438.4	233.23
Chloride (mg/L)	132.82	n/a	1.52	22.65
Fluoride (mg/L)	0.11	n/a	0.1	0.1
pH (SU)	6.12 - 6.79	n/a	6.23-7.13	6.23-7.13
Sulfate (mg/L)	1197.73	n/a	865.08	527.68
Total Dissolved Solids (mg/L)	2391.34	n/a	1863.13	1243.1

APPENDICES

APPENDIX A

ANALYTICAL LABORATORY REPORTS & FIELD REPORTS

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Date: Report Created:

5/6/2020 5/7/2020 4:59:13 PM

Client:

General Waste Disposal & Recovery

NTS Project Name:

CCR Landfill Monitoring Master 2020

NTS Field Personnel:

Corey Andrews

Summary of Services Performed:

Prepped and departed for General Waste to conduct Spring CCR well monitoring event. Sampled wells MW-8 and MW-9 via the low flow stabilization method. No unusual observations were noted during sampling. FB and DUP were obtained at MW-9. Samples ceded to PACE Analytical in Virginia, MN. For additional details see field notes and COC.

Field Report Cover Sheet

Event Key: 6385CC_2020 May(1 of 1)

NTS Project Manager:

Dennis Schubbe

MW8

SECTION #1: DATA COLLECTION ☑ Sample Collected Field Duplicate:

Field Blank: Equip Blank:

Time (HH:MM):	۲ (SL	оН J):	DO (mg/L):	SpecCond (μS/cm):	Turbidity (NTU):		ORP (mV):	Temp (°C):
16:11	6.3	6	0.00	1821	20.6		357	12.30
32.76	Static Wate	r Level in	Water by	Field Measurer	ment <i>,</i> ft			
1461.65	Elevation, G	GW (MSL) i	n Water	by Calculation,	ft			
SECTION #2: OI	BSERVATION	IS			Ti	ime:	14:50	
Air Tei	mperature:	51°F to 60	Э°F		M	DH#:	817978	
W	ind Speed:	10-20 mp	h		Well Depth	(ft):	41.22	
Wind	Direction:	N-NW			SWL	(ft):	32.76	
Pre	ecipitation:	None			Pump Rate (gr	om):	0.20	
CI	oud Cover:	Clear			Interval (n	nin):	6.90	
Airborne F	Particulate:	None		Well C	asing Diameter	(in):	2	
Co	olor, Purge:	Orange		Pu	mp Start (HH:N	IM):	15:08	
Appeara	nce, Purge:	Turbid		Pu	mp Stop (HH:N	IM):	16:21	
0	dor, Purge:	None		F	Purge Volume (gal):	14.60	
Colo	or, Sample:	Colorless			Purging Strat	egy:	Low-Flow	Stabilization
Appearance	ce, Sample:	Clear			Well Plug Pres	ent:		
Ode	or, Sample:	None			Well Loc	ked:		

GW CALCULATIONS:

Total Water Depth 41.22ft - Static Water Level 32.76ft = Water Column 8.46ft Water Column 8.46ft x *Conversion Factor 0.163gal/ft = Well Volume 1.381gal Well Volume 1.381gal ÷ Pump Rate 0.20gpm = Well Volume Interval 6.903min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 15:08 - Pump End Time 16:21 = Pump Duration 73min Pump Duration 73min x Pump Rate 0.20gpm = Volume Purged 14.6gal Top of Casing Elevation 1494.41 - Static Water Level 32.76 = 1461.65ft

SECTION #3: STABILIZATION Well Vol Interval (min): 6.90

Pump Rate (gpm): 0.20

MW8 (Cont'd)

	/						
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C	
Time	рН	DO	SpecCond	Turbidity	ORP	Temp	SWL
(HH:MM):	(SU):	(mg/L):	(µS/cm):	(NTU):	(mV):	(°C):	(ft):
15:15	6.29	0.00	1855	247.9	481	11.71	35.93
15:22	6.30	0.00	1862	163.4	457	11.81	35.90
15:29	6.33	0.00	1856	72.7	437	11.90	35.70
15:36	6.35	0.00	1845	48.6	417	12.03	35.18
15:43	6.37	0.00	1846	41.2	398	12.12	34.98
15:50	6.37	0.00	1837	30.0	380	12.33	34.94
15:57	6.37	0.00	1831	19.6	369	12.44	35.01
16:04	6.36	0.00	1834	21.4	361	12.38	34.99
16:11	6.36	0.00	1821	20.6	357	12.30	34.94

Stabilization Passes NTS Criteria: 🔽

SECTION #1: DATA COLLECTION Sample Collected

Field Duplicate: Field Duplicate

Field Blank: Field Blank Equip Blank:

Time (HH:MM):	p (SU	H DO): (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):		ORP (mV):	Temp (°C):
11:24	6.53	3 0.00	1486	1.4		179	7.91
11.39	Static Water	Level in Water by	Field Measurer	nent <i>,</i> ft			
1443.33	Elevation, G	W (MSL) in Water	by Calculation,	ft			
SECTION #2: O	BSERVATION	S		Ti	ime: 1	10:45	
Air Te	mperature:	51°F to 60°F		M	DH#: 8	817980	
W	/ind Speed:	10-20 mph		Well Depth	(ft): 1	18.90	
Wind	d Direction:	N-NW		SWL	(ft): 1	11.39	
Pro	ecipitation:	None		Pump Rate (gr	om): (0.33	
Cl	oud Cover:	Clear		Interval (n	nin): 3	3.71	
Airborne I	Particulate:	None	Well C	asing Diameter	(in): 2	2	
Co	olor, Purge:	Colorless	Pu	mp Start (HH:N	1M): 1	11:00	
Appeara	nce, Purge:	Clear	Pu	mp Stop (HH:N	1M): 1	11:39	
0	dor, Purge:	None	F	Purge Volume (gal): 1	12.87	
Cole	or, Sample:	Colorless		Purging Strat	egy: L	_ow-Flow	Stabilization
Appearan	ce, Sample:	Clear		Well Plug Pres	ent:	\checkmark	
Ode	or, Sample:	None		Well Loc	ked:	\checkmark	

GW CALCULATIONS:

Total Water Depth 18.90ft - Static Water Level 11.39ft = Water Column 7.51ft Water Column 7.51ft x *Conversion Factor 0.163gal/ft = Well Volume 1.226gal Well Volume 1.226gal ÷ Pump Rate 0.33gpm = Well Volume Interval 3.714min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 11:00 - Pump End Time 11:39 = Pump Duration 39min Pump Duration 39min x Pump Rate 0.33gpm = Volume Purged 12.87gal Top of Casing Elevation 1454.72 - Static Water Level 11.39 = 1443.33ft

SECTION #3: S	TABILIZATIO	N Well Vol In	Pump	Rate (gpm):	0.33		
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C	
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
11:04	6.46	0.00	1585	17.0	320	7.90	11.92
11:08	6.48	0.00	1550	6.7	250	7.88	11.92
11:12	6.50	0.00	1530	3.5	211	7.90	11.92
11:16	6.51	0.00	1523	2.6	196	7.89	11.92
11:20	6.52	0.00	1502	1.7	187	7.91	11.92
11:24	6.53	0.00	1486	1.4	179	7.91	11.92
Stabilization P	asses NTS Cr	iteria: 🔽					

MW9 (Cont'd)

NTS

Calibration Report

Environmental Science & Engineering

Event Key: 6385CC_2020 May(1 of 1)

Staff: Corey Andrews

Date: 5/6/2020

Post Cal Check: 🗹

Comments:

526 Chestnut Street

Virginia, MN 55792

Phone: (218) 741-4290

Last Temp Check:12/26/2019Temp Specification:+/-0.1 °CpH:Standard (SU):Temperature (°C):	(HH:MM): 7:30 3.95 4.0 20.8	(HH:MM): 7:30 4.0 4.0 20.8	(HH:MM): 18:35 4.0 4.0	Specifications: +/-0.2 SU
pH: Standard (SU):	3.95 4.0	4.0 4.0	4.0	-
Standard (SU):	4.0	4.0		+/-0.2 SU
			4 0	
Temperature (°C):	20.8	20.8	4.0	.,
		20.8	20.7	
pH:	7.02	7.02	7.04	+/-0.2 SU
Standard (SU):	7.0	7.0	7.0	+/-0.2 30
Temperature (°C):	20.7	20.7	20.7	
pH:	9.96	10.06	9.96	./
Standard (SU):	10.0	10.0	10.0	+/-0.2 SU
Temperature (°C):	20.9	20.9	20.8	
Conductance, Specific:	0.0	0.0	0.0	Sum of
Standard (µmhos/cm):	0	0	0	+/-1 µmhos/cm
Temperature (°C):	20.9	20.9	19.7	AND
				+/-0.5%
Conductance, Specific:	1008	1000	1002	Sum of
Standard (µmhos/cm):	1000	1000	1000	Sum of +/-1 μmhos/cm
Temperature (°C):	20.23	20.23	20.84	AND
				+/-0.5%
Turbidity:	0.4	0.0	0.0	<100 · / 1 NTU
Standard (NTU):	0	0	0	<100 +/-1 NTU >100 AND <400 +/-12 NTU
Temperature (°C):	19.9	19.9	20.7	>400 AND <3000 +/-150 NTU
Turbidity:	103.1	102	104.1	
, Standard (NTU):	102	102	102	<100 +/-1 NTU >100 AND <400 +/-12 NTU
Temperature (°C):	20.4	20.4	20.1	>400 AND <3000 +/-150 NTU

Calibration Report (cont'd)

Sonde: R04-B	PreCal	PostCal	PostEvent	
Last Temp Check: 12/26/2019	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Specification: +/-0.1 °C	7:30	7:30	18:35	Specifications:
Oxygen, Dissolved:	8.73	8.58	8.56	<8 +/-0.1 mg/L
100% Oxygen Saturation:	8.62	8.62	8.59	>8 AND <20 +/-0.2 mg/L
Temperature (°C):	20.4	20.4	20.6	>20 +/-10%
Bar.Pressure (mmHg):	727	727	727	
ORP:	430	456	442	 +/-20 mV
Standard (mV):	455.5	455.5	448.2	·/-20111v
Temperature (°C):	15.0	15.0	17.9	

638 5CC. Gen Weste CCR Monitoring 5/6/2028
Orey Andrews
High 58°F/Sunny winds NW (0-20
0715 Prep (Call Ead.
0815 Depurt NTTS.
1045 [mw-9] Well locked plugged, i in good condition.
SWL TWO WE Vol Pump Rate 18.39 18.90 7.51 1.2gal 0.336PM
1100 Begin pumping well. 1125 sample obtained.
Time ptt LOD SpC Tick ORP TEMP SWL
1104 6.46 0.00 1585 17.0 320 7.90 11.92
1108 6.48 0.00 1550 6.7 250 7.88 11.92
1112 6.50 0.00 1530 3.5 211 7.70 11.92
1116 6.51 0:00 1523 2.6 196 7.89 11.92 1120 6.52 0:00 1502 1.7 187 7.91 11.92
1124 652 000 4181 41 128 - 1
1450 mw-& Well locked, plugged, in your condition.
SWL TWD US Vol Runp Rate
32.76 41.22 8.46 1.4 0.20
1508 Begin pumping well. 1612 sample obtained
Time pt LOD Spc Tib ORP Temp SWL
1515 6.29 0.00 1855 247.9 481 11.71 35.93
152.2 6.30 0.00 1862 163.4 457 11.81 35.90 1529 6.33 0.00 (856 72.7 437 11.90 35.70
1576 6.35 6.00 1845 48.6 417 12.03 35.18
1543 6.36 0.00 1846 41.2 398 12 12 34.98
1550 6.37 0.00 1837 30.0 380 12.33 34.94

Rite in the Rain .

1024385 CC Gen Waste CCR Monitoring \$16/2020 Corey Andrews High 58°F/Sung/winds 10-20 NW MW-8 cont----Spi Tub ORP Jemp SurL Time pt LDU 1831 19.6 369 12.44 35.01 6.37 0.00 1557 1834 21.4 361 12.39 34.99 1604 6.36 0.00 1611 6,36 0.00 1821 20.6 357 12.30 34.94 1740 Depart Gen Waste back at NTS- Unload/Kepart. 1825 Arrive Page 9 of 14

NTS 526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290	-	Vehicle Inspection Report Event Key: 6385CC_2020 May(1 of 1)				
Driver: Corey Andrews Vehicle: V62 - 2014 GMC Sierra		5/6/2020	Time: 07:40 Odometer:			
Check each Item Inspected						
Driver/Passenger Side External Side Mirrors (Right and Left): Comments:	Windows (clean; free of cracks): 		Tires erly inflated, adequate tread): ☑			
Front/Rear Tail Lights: License Plates Comments:			Damage to Body/Bumpers ✓ Turn Signals			
Routine Maintenance Oil Change (Current): Gauges Operational ('check engine' light OFF): Comments:	Spare Tire		Air Filter (Change every 30k): ☑			
Interior Cleanliness: Seat Belts (working condition): Comments:	 Brakes: Parking Brake (reset/release): 		Windshield Wipers and Fluid: ☑ Rearview Mirror: ☑			
General/Safety Insurance Card: Operator's Manual: Comments:	 Wheel Chocks: Strobe Light (if needed): 	:	First Aid Kit: ☑ Buggy Whip (if needed): ☑			

Deficiencies Corrected

Daily Tailgate Safety

Project: 63856 Ecc	Date: 5/6/2020
Work Site Hazard Assessment Works	heet
PPE Required (List): <u>H.y</u>	Level* D
Weather Conditions (List):	
Vehicular Traffic	Communications
🗖 Noise	Equipment/Tools
Housekeeping	Other Site Hazards**
taken Hazards Identified/Safety Items Disc Slips, Trips, Eralls Tizks	l and hazards found are listed below with corrective action ussed:
Corrective Actions Taken: walk castrossly	
walk castivosly check for ficks post	field event.
Participants in Safety Discussion:	

1. Corey Andrea	s Signature
2.	
3	
4	
5	- $ -$
ature of Site Supervisor/Exa	aminer: oregina Date: 5/6/2
	/

*Level D, C, B or A

**Examples: Heavy Equipment, Air Quality, Flammable materials, Wildlife, Work Site Security, Confined Space

02/20/2015

NTS Environmental Science & Engineering (218) 741-4290 Fax: (218) 741-4291							WO#: 12143663 Image: Display state CHAIN C. REQUIRED TURN-AROUND TIME: 2 Weeks from submittal date				
DEMOLITION & I	E and RECYLING L NDUSTRIAL LANDF NTY, MINNESOTA	LC	290 Fax: (218) 741-4291 REPORT TO: DENNIS SCHUBBE, KARISSA VOSEN & SCOTT SEELEY			(HCL) KV (NO PRES) RV (H2SO4) (HN03) LS (HN03) LS (HN03) LS (HN03)			SPECIAL INSTRUCTIONS: SEE ATTACHED LIST WITH METHODS		
SAMPLER: Corcy And PROJECT: GENERAL WASTE DISP PROJECT NUMBER: 6385CC		G, LLC.	PERMIT REQ.:	SW-620-002 May-20 ECTION:	MATRIX	A filtered	VOC M. 8260 (HCL)	GENERAL CHEMISTRY (NO PRES) GENERAL CHEMISTRY (H2SO4)	TOTAL METALS (HN03)	DISSOLVED METALS (HN03)	
LOG-IN #:	SAMPLE #	DESCRIPTION:	DATE:	TIME:	LIQ. S			1	1		REQUIRED ANALYSIS:
			62/06/2022	1612		-	+	_		-	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MVV9	GW WELL	05/06/2020	1125	×	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Duplicate	GW WELL	05/06/2020	1(26	x	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Blank	Field Blank	5/6/2020	1105	x	N		1	1		Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
RELINGUISHED BY: COLLY RELINQUISHED TO NTS SAMPLE L	-	DATE: 5 /3 /262 TIME: 5 816 DATE:	RECEIVED BY:						TI	ATE: IME: ATE:	
		TIME:	RECEIVED FROM	NTS SAMPLE L			0.000			IME:	
RECEIVED FORLAB BY: B. Mathe	us		TEMP.AT ARRIVA	c							
DATE 5/7/20	TIME: 08/Le	na di na									

GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method	
Boron	В	200.8	
Calcium	Ca	200.7	
Chloride	Chloride 300.0		
Fluoride	Flouride	300.0	
рН	рН	SM 4500 H+B	
Sulfate	SO ₄	300.0	
TDS	TDS	SM 2540C	

-	19			
2	Document Name: Sample Condition Upon Receipt Form	Document Revised: 25Feb2020 Page 1 of 1		
Pace Analytical	Document No.: F-VM-C-001-rev.14	Issuing Authority: Pace Virginia Minnesota Quality Office		
Sample Condition Client Name:	Project #:	WO#:12143663		
Courier: Fed Ex UPS	USPS Client	PM: NMJ Due Date: 05/21/20 CLIENT: NTS-Dennis		
acking Number:				
ustody Seal on Cooler/Box Present?	Vo Seals Intact? Yes No	Optional: Proj. Due Date: Proj. Name:		
acking Material: Bubble Wrap Bubb	ble Bags 🖉 None 🗌 Other:	Temp Blank?YesN		
nermometer Used: 140792808 poler Temp Read °C: 1.4 Cooler Tem emp should be above freezing to 6 °C Correction	Type of Ice: $$ Wet $$ Blue mp Corrected °C: $1 \cdot 7$ $1 \cdot 7$ Date and Initials o Commen	None Samples on ice, cooling process has beg Biological Tissue Frozen? ☐Yes ☐No F Person Examining Contents: <u>3</u> <u>Y</u> ts:		
Chain of Custody Present?	Yes No N/A 1.			
Chain of Custody Filled Out?	Yes No N/A 2.			
Chain of Custody Relinquished?	Ves No N/A 3.			
Sampler Name and Signature on COC?	Yes No N/A 4.			
Samples Arrived within Hold Time?	1	ecal: 🔲 <8 hours 🔲 >8, <24 hours 🔲 >24 hours		
Short Hold Time Analysis (<72 hr)?	Yes No N/A 6.			
Rush Turn Around Time Requested?	Yes No N/A 7.			
Sufficient Volume?	Yes No N/A 8.			
Correct Containers Used?	Yes No N/A 9.			
-Pace Containers Used?				
Containers Intact?	Yes No N/A 10.			
Filtered Volume Received for Dissolved Tests?		e if sediment is visible in the dissolved containers.		
Sample Labels Match COC?	Yes DNo DN/A 12			
-Includes Date/Time/ID/Analysis Matrix:	NT			
All containers needing acid/base preservation prop preserved?	erly Ves No N/A 13. Note	samples needing adjustment:		
Headspace in Methyl Mercury Container	Yes No N/A 14.			
Headspace in VOA Vials (>6mm)?	Yes No N/A 15.			
Trip Blank Present?	Ves No N/A 16.			
Trip Blank Custody Seals Present?	Yes No N/A			
Pace Trip Blank Lot # (if purchased): LIENT NOTIFICATION/RESOLUTION Person Contacted:	Date/Time:	Field Data Required? Yes No		
Comments/Resolution:				
EE EXCEPTION FORM Y N				
	TEMPEDATURE MAN	ER ON FILE Y N		
ECAL WAIVER ON FILE Y N	TEMPERATURE WAIV	LA ON FILE T IN		

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Report Peer Review Report

Event Key: 6385CC_2020 May(1 of 1) Report Date: 5/6/2020 Lab WO#: 12143663

Reviewer #1:	Date:
Karissa Vosen	5/8/2020

Reviewer #2:	Date:	
Jonathan Novak	5/7/2020	

Report Sections	Required:	Included:
Cover Sheet:	\checkmark	\checkmark
Location Information		
Data Collection:		
Observation:	\checkmark	\checkmark
Flow or Stabilization:	\checkmark	\checkmark
Photographs:		
Calibration:	\checkmark	\checkmark
Field Notes:	\checkmark	\checkmark
Safety Forms:	\checkmark	\checkmark
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		\checkmark
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		\checkmark
Consistent Values in Notes:		\checkmark
Consistent Dates and Times:		\checkmark
No Deviations from SOPs:		\checkmark
Cover Sheet provides a complete description of key activities and observations:		

Reviewer #1 Comments:

Report Sections	Required:	Included:
Cover Sheet:	\checkmark	\checkmark
Location Information		
Data Collection:		\checkmark
Observation:		\checkmark
Flow or Stabilization:		\checkmark
Photographs:		
Calibration:		\checkmark
Field Notes:		\checkmark
Safety Forms:		\checkmark
	_	
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		\checkmark
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		\checkmark
Consistent Values in Notes:		\checkmark
Consistent Dates and Times:		\checkmark
Qualifiers added to Data:	\checkmark	
Data under correct Event Key:		\checkmark
All Req'd Parameters Meas'd; Limits Met:		

Reviewer #2 Comments:

Pace Analytical Services, LLC 315 Chestnut Street Virginia, MN 55792 (218) 735-6700

May 19, 2020

Dennis Schubbe Northeast Technical Services 526 Chestnut Street Virginia, MN 55792

RE: Project: 6385CC General Waste Disposal Pace Project No.: 12143663

Dear Dennis Schubbe:

Enclosed are the analytical results for sample(s) received by the laboratory on May 07, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Duluth
- Pace Analytical Services Virginia

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mikki Janve

Nicole Jarve nikki.jarve@pacelabs.com (218) 735-6712 Project Manager

Enclosures

cc: Sample Data, Northeast Technical Services Scott Seeley, NTS Karissa Vosen, NTS

CERTIFICATIONS

Project: 6385CC General Waste Disposal

Pace Project No.: 12143663

Pace Analytical Services Virginia Minnesota

315 Chestnut Street, Virginia, MN 55792 Alaska Certification UST-107 Montana Certificate #CERT0103 Minnesota Dept of Health Certification #: 027-137-445

Pace Analytical Services Duluth Minnesota

4730 Oneota St., Duluth, MN 55807 Montana DHHS Certification #: CERT0102 Minnesota Dept of Ag Certification #: Via MN Dept of Health 027-137-152 Minnesota Dept of Health Certification #: 1733125 North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007

Wisconsin Dept of Agriculture Certification #: 480341 Wisconsin DNR Certification #: 999446800 North Dakota Certification #: R-105 Nevada DCNR Certification #: MN000372019-1

SAMPLE SUMMARY

Project: 6385CC General Waste Disposal

Pace Project No.: 12143663

Lab ID	Sample ID	Matrix	Date Collected	Date Received
12143663001	MW8	Water	05/06/20 16:12	05/07/20 08:16
12143663002	MW9	Water	05/06/20 11:25	05/07/20 08:16
12143663003	Field Duplicate	Water	05/06/20 11:26	05/07/20 08:16
12143663004	Field Blank	Water	05/06/20 11:05	05/07/20 08:16

SAMPLE ANALYTE COUNT

Project:	6385CC General Waste Disposal

Pace Project No.: 12143663

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
12143663001	 MW8	SM 2540 C-2011	EH1	1	PASI-DUL	
		EPA 200.7	AK1	1	PASI-V	
		EPA 200.8	DES	1	PASI-V	
		SM 4500-H+ B-2011	CSD	1	PASI-V	
		EPA 300.0	CSD	3	PASI-V	
12143663002	MW9	SM 2540 C-2011	EH1	1	PASI-DUL	
		EPA 200.7	AK1	1	PASI-V	
		EPA 200.8	DES	1	PASI-V	
		SM 4500-H+ B-2011	CSD	1	PASI-V	
		EPA 300.0	CSD	3	PASI-V	
12143663003	Field Duplicate	SM 2540 C-2011	EH1	1	PASI-DUL	
		EPA 200.7	AK1	1	PASI-V	
		EPA 200.8	DES	1	PASI-V	
		SM 4500-H+ B-2011	CSD	1	PASI-V	
		EPA 300.0	CSD	3	PASI-V	
12143663004	Field Blank	SM 2540 C-2011	EH1	1	PASI-DUL	
		EPA 200.7	AK1	1	PASI-V	
		EPA 200.8	DES	1	PASI-V	
		SM 4500-H+ B-2011	CSD	1	PASI-V	
		EPA 300.0	CSD	3	PASI-V	

PASI-DUL = Pace Analytical Services - Duluth PASI-V = Pace Analytical Services - Virginia

ANALYTICAL RESULTS

Project: 6385CC General Waste Disposal

Sample: MW8	Lab ID: 12	143663001	Collected: 05/0	6/20 16:	12 Received: 0	5/07/20 08:16 N	Aatrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Me Pace Analytic							
Total Dissolved Solids	1460	mg/L	40.	0 1		05/08/20 17:05		
200.7 MET ICP	Analytical Me Pace Analytic		0.7 Preparation N Virginia	lethod: I	EPA 200.7			
Calcium	342	mg/L	0.5	0 1	05/11/20 09:42	05/12/20 12:07	7440-70-2	
200.8 MET ICPMS	Analytical Me Pace Analytic		0.8 Preparation N Virginia	lethod: E	EPA 200.8			
Boron	71.9	ug/L	40.	0 1	05/11/20 09:42	05/12/20 14:56	7440-42-8	
4500H+ pH, Electrometric	Analytical Me Pace Analytic							
pH at 25 Degrees C	7.4	Std. Units	0.1	0 1		05/08/20 14:59		H6
300.0 IC Anions 28 Days	Analytical Me Pace Analytic							
Chloride	1.6	mg/L	1.			05/12/20 16:30		
Fluoride Sulfate	ND 547	mg/L mg/L	0.1 12.			05/12/20 16:30 05/13/20 08:16		
		5						
Sample: MW9	Lab ID: 12	143663002	Collected: 05/0	6/20 11:2	25 Received: 0	5/07/20 08:16 N	Aatrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Me Pace Analytic							
Total Dissolved Solids	1100	mg/L	40.	0 1		05/08/20 17:05		
200.7 MET ICP	Analytical Me Pace Analytic		0.7 Preparation N Virginia	1ethod: I	EPA 200.7			
Calcium	206	mg/L	0.5	0 1	05/11/20 09:42	05/12/20 12:13	7440-70-2	
200.8 MET ICPMS	Analytical Me Pace Analytic		0.8 Preparation N Virginia	lethod: I	EPA 200.8			
Boron	ND	ug/L	40.	0 1	05/11/20 09:42	05/12/20 15:07	7440-42-8	
4500H+ pH, Electrometric	Analytical Me Pace Analytic							
pH at 25 Degrees C	7.4	Std. Units	0.1	0 1		05/08/20 14:51		H6
300.0 IC Anions 28 Days	Analytical Me Pace Analytic							

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 6385CC General Waste Disposal Pace Project No .: 12143663 Sample: MW9 Lab ID: 12143663002 Collected: 05/06/20 11:25 Received: 05/07/20 08:16 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 300.0 300.0 IC Anions 28 Days Pace Analytical Services - Virginia 05/12/20 17:12 16984-48-8 Fluoride ND 0.10 mg/L 1 Sulfate 425 8.0 4 05/13/20 08:58 14808-79-8 mg/L Sample: Field Duplicate Lab ID: 12143663003 Collected: 05/06/20 11:26 Received: 05/07/20 08:16 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 2540C Total Dissolved Solids Analytical Method: SM 2540 C-2011 Pace Analytical Services - Duluth **Total Dissolved Solids** 1090 mg/L 40.0 1 05/08/20 17:05 200.7 MET ICP Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Virginia Calcium 203 mg/L 0.50 1 05/11/20 09:42 05/12/20 12:11 7440-70-2 Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 200.8 MET ICPMS Pace Analytical Services - Virginia Boron ND 40.0 05/11/20 09:42 05/12/20 15:03 7440-42-8 ug/L 1 Analytical Method: SM 4500-H+ B-2011 4500H+ pH, Electrometric Pace Analytical Services - Virginia pH at 25 Degrees C 7.4 Std. Units 0.10 05/08/20 18:04 H6 1 Analytical Method: EPA 300.0 300.0 IC Anions 28 Days Pace Analytical Services - Virginia Chloride 2.1 05/12/20 16:51 16887-00-6 mg/L 1.0 1 Fluoride ND mg/L 0.10 05/12/20 16:51 16984-48-8 1 Sulfate 346 mg/L 8.0 05/13/20 08:37 14808-79-8 4 Lab ID: 12143663004 Sample: Field Blank Collected: 05/06/20 11:05 Received: 05/07/20 08:16 Matrix: Water Parameters Results Units DF CAS No. Qual Report Limit Prepared Analyzed 2540C Total Dissolved Solids Analytical Method: SM 2540 C-2011 Pace Analytical Services - Duluth **Total Dissolved Solids** ND mg/L 10.0 1 05/08/20 17:05 Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 MET ICP Pace Analytical Services - Virginia Calcium ND mg/L 0.50 05/11/20 09:42 05/12/20 12:09 7440-70-2 1

ANALYTICAL RESULTS

Project: 6385CC General Waste Disposal

Pace Project No.: 12143663

Sample: Field Blank	Lab ID: 121	43663004	Collected:	05/06/2	20 11:05	Received: 05	5/07/20 08:16 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparat	tion Me	thod: EF	PA 200.8			
	Pace Analytica	al Services -	Virginia						
Boron	ND	ug/L		40.0	1	05/11/20 09:42	05/12/20 14:59	7440-42-8	
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+ B-2011						
	Pace Analytica	al Services -	Virginia						
pH at 25 Degrees C	5.9	Std. Units		0.10	1		05/08/20 09:49)	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
	Pace Analytica	al Services -	Virginia						
Chloride	ND	mg/L		1.0	1		05/12/20 14:45	16887-00-6	
Fluoride	ND	mg/L		0.10	1		05/12/20 14:45	16984-48-8	
Sulfate	ND	mg/L		2.0	1		05/12/20 14:45	14808-79-8	

Project: Pace Project No.:	6385CC General 12143663	Waste Disposal							
QC Batch:	188702		Analysis Me	ethod:	SM 2540 C-20	11			
QC Batch Method:	SM 2540 C-2011		Analysis De	escription:	2540C Total Dissolved Solids				
			Laboratory:		Pace Analytica	I Services - Dul	uth		
Associated Lab San	nples: 12143663	001, 1214366300	2, 12143663003,	12143663004					
METHOD BLANK:	742711		Matrix	: Water					
Associated Lab San	nples: 12143663	001, 1214366300	2, 12143663003,	12143663004	ļ				
			Blank	Reporting					
Paran	neter	Units	Result	Limit	Analyze	d Qualit	fiers		
Total Dissolved Solie	ds	mg/L	ND	1	0.0 05/08/20 1	7:05			
LABORATORY COM	NTROL SAMPLE:	742712							
			Spike	LCS	LCS	% Rec			
Paran	neter	Units	Conc	Result	% Rec	Limits	Qualifiers		
Total Dissolved Solid	ds	mg/L	250	252	101	80-120			
SAMPLE DUPLICA	ΓE: 742713								
Dama		1.1.5.1.5	12143617002	Dup		Max	Qual	C	
Paran		Units	Result	Result	RPD	RPD	Quali	fiers	
Total Dissolved Solie	ds	mg/L	1950	19	60	1	5		
SAMPLE DUPLICA	ΓE: 742714			-					
Paran	otor	Units	12143663003 Result	Dup Result	RPD	Max RPD	Quali	fiore	
				·					
Total Dissolved Solie	ds	mg/L	1090	11	20	3	5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	6385CC General V	Waste Disposal										
Pace Project No.:	12143663		Analy	ysis Method	4.	EPA 200.7						
QC Batch Method:	EPA 200.7			ysis Descrip		200.7 MET						
				ratory:		Pace Analyt	ical Servic	es - Virginia	а			
Associated Lab San	nples: 12143663	001, 1214366300	2, 1214366	53003, 1214	43663004							
METHOD BLANK:	742836			Matrix: Wa	ater							
Associated Lab San	nples: 12143663	001, 1214366300	2, 1214366	3003, 1214	43663004							
			Blai	nk F	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	yzed	Qualifier	s			
Calcium		mg/L		ND	0.5	50 05/12/2	0 12:03					
LABORATORY COM	NTROL SAMPLE:	742837										
			Spike	LC	-	LCS	% R					
Paran	neter	Units	Conc.	Res	ult	% Rec	Limi	its (Qualifiers	_		
Calcium		mg/L	25	.2	25.3	10	0 8	85-115				
MATRIX SPIKE & M	ATRIX SPIKE DUE	PLICATE: 7428	38		742839							
			MS	MSD	2000							
		12143686003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	58.5	25.2	25.2	84.0	82.5	101	95	70-130	2	20	
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 7428	40		742841							
			MS	MSD								
		12143644002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	. 13.2	25.2	25.2	37.9	37.9	98	98	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	6385CC General V	Vaste Disposal										
Pace Project No.:	12143663											
QC Batch:	188757		Analy	sis Metho	d:	EPA 200.8						
QC Batch Method:	EPA 200.8		Analy	/sis Descri	ption:	200.8 MET						
			Labo	ratory:		Pace Analyt	ical Service	es - Virginia	a			
Associated Lab Sar	nples: 121436630	001, 1214366300	2, 1214366	3003, 121	43663004							
METHOD BLANK:	742832			Matrix: W	ater							
Associated Lab Sar	nples: 121436630	001, 1214366300	2, 1214366	3003, 121	43663004							
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifier	3			
Boron		ug/L		ND	40	.0 05/12/20	0 14:48					
LABORATORY COI	NTROL SAMPLE:	742833										
			Spike	LC	S	LCS	% Re	ec				
Paran	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Boron		ug/L	5	50	48.2	90	6 8	35-115		_		
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 7428	-		742835							
			MS	MSD								
Parameter	r Units	12143629002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L		50	50	54.2	53.0	98	96	70-130	2		Guui
Doron	ug/∟	<0.0	50	50	04.2	00.0	30	30	10-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	6385CC General \ 12143663	Vaste Disposal							
QC Batch:	188669		Analysis M	lethod:	SM 4500-H+	B-2011			
QC Batch Method:	SM 4500-H+ B-2	011	Analysis D	Description:	4500H+B pH				
			Laboratory	y:	Pace Analytic	inia			
Associated Lab Sa	mples: 12143663	004							
LABORATORY CO	NTROL SAMPLE:	742567							
			Spike	LCS	LCS	% R			
Para	meter	Units	Conc.	Result	% Rec	Limi	ts	Qualifiers	
pH at 25 Degrees (C	Std. Units	7	7.0	99	ç	98-102 H	46	
SAMPLE DUPLICA	TE: 742568								
			1214360400	- 1			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
1 did	lineter	Onito	rtoourt						
		Std. Units	6.		6.8	0		10 H6	
pH at 25 Degrees (2					0			
pH at 25 Degrees (2			.8		0	Max		
pH at 25 Degrees (2		6.	.8		0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	6385CC General 12143663	Waste Disposal								
QC Batch:	188670		Analysis M	lethod:	SM 4500)-H+ B-2	011			
QC Batch Method:	SM 4500-H+ B-2	2011	Analysis D	4500H+E	4500H+B pH					
			Laboratory	<i>'</i> :	Pace Analytical Services - Virginia					
Associated Lab Sar	nples: 12143663	001, 1214366300	2, 12143663003							
LABORATORY CO	NTROL SAMPLE:	742570								
			Spike	LCS	LCS		% Rec			
Parar	neter	Units	Conc.	Result	% Rec		Limits	Qu	alifiers	
pH at 25 Degrees C	;	Std. Units	7	7.0		99	98-102	H6		
SAMPLE DUPLICA	TE: 742571									
			12143583005	5 Dup			Max			
Parar	neter	Units	Result	Result	F	RPD	RPD		Qualifiers	
pH at 25 Degrees C	;	Std. Units	8.	4	8.5	()	10 H	H6	
SAMPLE DUPLICA	TE: 742572									
			12143663003	- 1			Max			
Parar	neter	Units	Result	Result	F	RPD	RPD		Qualifiers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch:	1888	47		Anal	ysis Method	l· ⊢	PA 300.0						
QC Batch M		300.0			Analysis Description: 300.0 IC Anions								
QO Daton M		000.0			pratory:			ical Service	es - Viraini:	а			
Associated L	Lab Samples:	121436630	001, 1214366300		,		abbythaly		o virgini				
METHOD B	LANK: 74318	3			Matrix: W	ater							
Associated L	Lab Samples:	121436630	001, 1214366300	02, 1214366	63003, 1214	43663004							
				Bla	nk l	Reporting							
	Parameter		Units	Res	sult	Limit	Anal	yzed	Qualifier	s			
Chloride			mg/L		ND	1.0	05/12/2	0 09:30					
Fluoride			mg/L		ND	0.10							
Sulfate			mg/L		ND	2.0	05/12/2	0 09:30					
LABORATO	RY CONTROL	SAMPLE:	743184										
				Spike			LCS	% Re					
	Parameter		Units	Conc.	Res	ult	% Rec	Limit	ts (Qualifiers	_		
Chloride			mg/L	Ę	50	51.3	10		90-110				
Fluoride			mg/L		5	5.4	10		90-110				
Sulfate			mg/L	Ę	50	51.6	10	3 9	90-110				
MATRIX SP	IKE & MATRIX	SPIKE DUPI	LICATE: 7431	85		743186							
				MS	MSD								
			12143677001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>
D	rameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
			4.0	50	50	55.7	56.7	102	104		2	-	
Chloride		mg/L	4.6					~ 7			2	20	
Chloride Fluoride		mg/L	ND	5	5	4.9	5.0	97 102	99 105	90-110		20	
Chloride		0	-				5.0 69.5	97 103	99 105	90-110 90-110	1	20	
Chloride Fluoride Sulfate	IKE & MATRIX	mg/L mg/L	ND 16.8	5 50	5	4.9						20	
Chloride Fluoride Sulfate	IKE & MATRIX	mg/L mg/L	ND 16.8 LICATE: 7431	5 50 87 MS	5 50 MSD	4.9 68.5 743188	69.5	103	105	90-110			
Chloride Fluoride Sulfate MATRIX SP		mg/L mg/L SPIKE DUPI	ND 16.8 LICATE: 7431 12143654001	5 50 87 MS Spike	5 50 MSD Spike	4.9 68.5 743188 MS	69.5 MSD	103 MS	105 MSD	90-110 % Rec	1	Max	
Chloride Fluoride Sulfate MATRIX SP Pa	IKE & MATRIX	mg/L mg/L SPIKE DUPI	ND 16.8 LICATE: 7431 12143654001 Result	5 50 87 MS Spike Conc.	5 50 MSD Spike Conc.	4.9 68.5 743188 MS Result	69.5 MSD Result	103 MS % Rec	105 MSD % Rec	90-110 % Rec Limits	1 RPD	Max RPD	Qual
Chloride Fluoride Sulfate MATRIX SP		mg/L mg/L SPIKE DUPI	ND 16.8 LICATE: 7431 12143654001	5 50 87 MS Spike	5 50 MSD Spike	4.9 68.5 743188 MS	69.5 MSD	103 MS	105 MSD	90-110 % Rec	1	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 6385CC General Waste Disposal

Pace Project No.: 12143663

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	6385CC General Waste Disposal

Pace Project No.: 12143663

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
12143663001	 MW8	SM 2540 C-2011	188702		
12143663002	MW9	SM 2540 C-2011	188702		
12143663003	Field Duplicate	SM 2540 C-2011	188702		
12143663004	Field Blank	SM 2540 C-2011	188702		
12143663001	MW8	EPA 200.7	188758	EPA 200.7	188840
12143663002	MW9	EPA 200.7	188758	EPA 200.7	188840
12143663003	Field Duplicate	EPA 200.7	188758	EPA 200.7	188840
12143663004	Field Blank	EPA 200.7	188758	EPA 200.7	188840
12143663001	MW8	EPA 200.8	188757	EPA 200.8	188841
2143663002	MW9	EPA 200.8	188757	EPA 200.8	188841
12143663003	Field Duplicate	EPA 200.8	188757	EPA 200.8	188841
2143663004	Field Blank	EPA 200.8	188757	EPA 200.8	188841
2143663001	MW8	SM 4500-H+ B-2011	188670		
2143663002	MW9	SM 4500-H+ B-2011	188670		
2143663003	Field Duplicate	SM 4500-H+ B-2011	188670		
12143663004	Field Blank	SM 4500-H+ B-2011	188669		
12143663001	MW8	EPA 300.0	188847		
12143663002	MW9	EPA 300.0	188847		
12143663003	Field Duplicate	EPA 300.0	188847		
12143663004	Field Blank	EPA 300.0	188847		

	NTS 526 CHESTNUT STREET									WO#:12143663					
Environmental Science & Engineering			GINIA, MN 557				REQUIRED TURN-AROUND TIME: 2 Weeks from submittal date								
DEMOLITION &	GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA				SSA VOSEN EY	N &		(04)	TOTAL METALS (HN03) 20 DISSOLVED METALS (HN03) 22	ERS SPECIAL INSTRUCTIONS: SEE ATTACHED LIST WITH METHODS					
SAMPLER:	POSAL and RECYCLIN	G, LLC.	PERMIT REQ.: SW-620-002 May-20				VOC M. 8	NERAL CHEM	TOTAL MET						
PROJECT NUMBER: 6385CC LOG-IN #:	CCR Monitoirng	DESCRIPTION:	COLLI DATE:	ECTION: TIME:	MATRIX	OL.	U U U	E E		REQUIRED ANALYSIS:					
	MVV8	GW WELL	05/06/2020	1612	x	N		1	1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS					
	MW9	GW WELL	05/06/2020	1125	×	N		1	1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS					
	Field Duplicate	GW WELL	05/06/2020	1(26	×	N		1	1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS					
	Field Blank	Field Blank	5/6/2020	1105	x	N		1	1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS					
RELINGUISHED BY:	1	DATE: 5/12/202. TIME: 5816	SRECEIVED BY:						DATE						
RELINQUISHED TO NTS SAMPLE		DATE: TIME:	RECEIVED FROM	NTS SAMPLE L	OCKUP BY:				DATE TIME						
RECEIVED FOR LAB BY:	1.		TEMP.AT ARRIVAL				1								
DATE 17/20	TIME: 08/16														

GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C

Paga Acalidical	Document Name: Sample Condition Upon Receipt Form Document No.: F-VM-C-001-rev.14			ipt Form	Document Revised: 25Feb2020 Page 1 of 1	
Pace Analytical					Issuing Authority: Pace Virginia Minnesota Quality Office	
ample Condition Client Name: Upon Receipt	15		Project /	t:	WO#:12143663	
Courier: Fed Ex UPS	USPS Other		Client	-	PM: NMJ Due Date: 05/21/20 CLIENT: NTS-Dennis	
stody Seal on Cooler/Box Present?	💭 🗸 o Seal	s Intact?	Yes	No	Optional: Proj. Due Date: Proj. Name:	
cking Material: Bubble Wrap Bubb	ne Bags	None	Other:		Temp Blank?	
ermometer Used: 140792808 oler Temp Read °C: 1.4 Cooler Ter mp should be above freezing to 6 °C Correction	Type of ************************************	c: _[.7	Blue I Initials	None □Samples on ice, cooling process has beg Biological Tissue Frozen? □Yes □No of Person Examining Contents: 3/2/7/2	
Chain of Custody Present?	Ves	No	N/A	1.		
Chain of Custody Filled Out?	Yes	No	□N/A	2.		
Chain of Custody Relinquished?	Ves	No		3.		
Sampler Name and Signature on COC?	Yes	No	□n/A	4		
Samples Arrived within Hold Time?	Yes	No	□N/4	5. If	Fecal:	
Short Hold Time Analysis (<72 hr)?	Yes	No	N/4	6.		
Rush Turn Around Time Requested?	□Yes	No	□N/A	1.		
Sufficient Volume?	Ves	No	□N/A	8		
Correct Containers Used?	Ves	No	□N/A	9.		
Pace Containers Used?	Pives.	No				
Containers Intact?	Tives	No		10.		
Filtered Volume Received for Dissolved Tests?	□v _{es}	- No	N/A		te if sediment is visible in the dissolved containers.	
Sample Labels Match COC?	Ves	No		12		
	NT					
All containers needing acid/base preservation propi	arly Yes	No		13. No	te samples needing adjustment.	
preserved?	 Yes	No		-11-		
Headspace in Methyl Mercury Container			DIN/A	14.		
Headspace in VOA Vials (>6mm)? Trip Blank Present?	Ves Ves			15. 16.		
Trip Blank Custody Seals Present?	□ Yes			10.		
Pace Trip Blank Lot # (if purchased):			1			
IENT NOTIFICATION/RESOLUTION						
LIENT NOTIFICATION/RESOLUTION Person Contacted:				ate/Tim	Field Data Required? Yes No	
Comments/Resolution:				ale/ IIm	E	
EE EXCEPTION FORM Y N						
ECAL WAIVER ON FILE Y N	TEMPERATURE WAIVER ON FILE Y N					
roject Manager Review: Nikki 🤇	arve				Date: 5/7/20	
te: Whenever there is a discrepancy affecting North a						

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Date: Report Created:

5/29/2020 6/4/2020 5:12:59 PM

Client:

General Waste Disposal & Recovery

NTS Project Name:

CCR Landfill Monitoring Master 2020

NTS Field Personnel:

Corey Andrews

Summary of Services Performed:

Conducted Spring 2020 CCR Groundwater Monitoring at wells MW-07 and MW-10. Sampled wells via low flow stabilization method. Top of well casing elevation shot in at MW-10 along with surface elevation. Static water levels obtained at MW-08 and MW-09. Samples ceded to PACE Analytical in Virginia, MN. For additional details see field notes and COC.

Event Key: 6385CC_2020 May(1 of 1)

Field Report Cover Sheet

NTS Project Manager:

Dennis Schubbe

MW10

SECTION #1: DATA COLLECTION ☑ Sample Collected Field Duplicate:

Field Blank: Equip Blank:

Time (HH:MM):	p (SU	H DO): (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	•
10:25	6.92	1 0.00	1065	9.1	279	4.39
10.01	Static Water	Level in Water by	Field Measure	ment, ft		
1442.606	Elevation, G	W (MSL) in Water	by Calculation,	ft		
SECTION #2: OI	BSERVATION	S		Ti	i me: 10:55	
Air Tei	mperature:	51°F to 60°F		M	DH#: 847087	
W	/ind Speed:	10-20 mph	Well Depth (ft):		(ft): 18.20	
Wind	d Direction:	N-NW	SWL (ft): 10			
Pre	ecipitation:	None		Pump Rate (gr	om): 0.50	
CI	oud Cover:	Overcast		Interval (n	nin): 2.67	
Airborne F	Particulate:	None	Well C	asing Diameter	(in): 2	
Co	olor, Purge:	Lt. Gray	Pu	mp Start (HH:N	1M): 11:04	
Appeara	nce, Purge:	Turbid	Pump Stop (HH:MM): 11:32		1M): 11:32	
0	dor, Purge:	None	Purge Volume (gal): 14.00			
Cole	or, Sample:	Colorless	Purging Strategy: Low-Flow Stabiliz		v Stabilization	
Appearance	ce, Sample:	Clear	Well Plug Present: 🗹			
Ode	or, Sample:	None		Well Loc	ked: 🗹	

GW CALCULATIONS:

Total Water Depth 18.20ft - Static Water Level 10.01ft = Water Column 8.19ft Water Column 8.19ft x *Conversion Factor 0.163gal/ft = Well Volume 1.337gal Well Volume 1.337gal ÷ Pump Rate 0.50gpm = Well Volume Interval 2.673min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 11:04 - Pump End Time 11:32 = Pump Duration 28min Pump Duration 28min x Pump Rate 0.50gpm = Volume Purged 14gal Top of Casing Elevation 1452.616 - Static Water Level 10.01 = 1442.606ft

SECTION #3: STABILIZATION Well Vol Interval (min): 2.67				Pump	Rate (gpm):	0.50	
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C	
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
10:07	7.12	0.00	1053	28.6	321	4.41	10.75
10:10	7.01	0.00	1056	23.9	315	4.43	10.80
10:13	6.96	0.00	1065	14.9	306	4.39	10.79
10:16	6.91	0.00	1067	10.8	298	4.42	10.77
10:19	6.92	0.00	1067	9.8	289	4.46	10.77
10:22	6.93	0.00	1062	9.5	284	4.42	10.78
10:25	6.91	0.00	1065	9.1	279	4.39	10.77

SECTION #1: DATA COLLECTION Sample Collected

Field Duplicate: Field Duplicate

Field Blank: Field Blank Equip Blank:

Time (HH:MM):	p (SU	DH DO D): (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):
10:25	6.2	7 0.00	2958	23.4	280	10.60
20.65Static Water Level in Water by Field Measurement, ft1475.48Elevation, GW (MSL) in Water by Calculation, ft						
SECTION #2: OI	BSERVATION	S		Ti	me: 09:43	
Turbidity slight	ly out of stab	oilization specificat	ions. Was boun	icing up and dov	vn with last 3 w	ell volumes.
Air Ter	nperature:	51°F to 60°F		MD)H#: 817979	
W	ind Speed:	10-20 mph		Well Depth	(ft): 26.63	
Winc	Direction:	N-NW		SWL	(ft): 20.65	
Pre	cipitation:	None		Pump Rate (gp	om): 0.125	

Precipitation:	None	Pump Rate (gpm):	0.125
Cloud Cover:	Mostly Cloudy	Interval (min):	7.81
Airborne Particulate:	None	Well Casing Diameter(in):	2
Color, Purge:	Orange	Pump Start (HH:MM):	9:37
Appearance, Purge:	Turbid	Pump Stop (HH:MM):	10:35
Odor, Purge:	None	Purge Volume (gal):	7.25
Color, Sample:	Colorless	Purging Strategy:	Low-Flow Stabilization
Appearance, Sample:	Turbid	Well Plug Present:	
Odor, Sample:	None	Well Locked:	

GW CALCULATIONS:

Total Water Depth 26.63ft - Static Water Level 20.65ft = Water Column 5.98ft Water Column 5.98ft x *Conversion Factor 0.163gal/ft = Well Volume 0.976gal Well Volume 0.976gal ÷ Pump Rate 0.125gpm = Well Volume Interval 7.807min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 09:37 - Pump End Time 10:35 = Pump Duration 58min Pump Duration 58min x Pump Rate 0.125gpm = Volume Purged 7.25gal Top of Casing Elevation 1496.13 - Static Water Level 20.65 = 1475.48ft

SECTION #3: STABILIZATION Well Vol Interval (min): 7.81 **Pump Rate (gpm):** 0.125 <=5 NTU Spec: +/- 0.2 SU +/- 0.2 mg/L +/- 5 % +/- 20 mV +/- 0.2 °C +/- 10 % SWL Time pН DO SpecCond Turbidity ORP Temp (HH:MM): (SU): (mg/L): $(\mu S/cm)$: (NTU): (mV): (°C): (ft): 9:45 6.36 0.09 2858 144.5 387 10.58 21.60 6.24 9:53 0.00 2896 49.2 350 10.48 21.61 10:01 6.25 0.00 2913 22.7 313 10.61 21.65 6.20 10:09 0.00 2931 17.5 293 10.70 21.67 6.27 10:17 0.00 2948 18.1 288 10.58 21.68 10:25 6.27 0.00 2958 23.4 280 10.60 21.68

Field Blank: Equip Blank:

Time (HH:MM):	pH (SU):		SpecCond (μS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):
33.14	33.14 Static Water Level in Water by Field Measurement, ft					
1461.27	Elevation, GW	/ (MSL) in Water	by Calculation,	ft		
SECTION #2: O	BSERVATIONS			Ti	i me: 10:43	
Air Te	mperature: 5	1°F to 60°F		MC	DH#: 817978	
v	Vind Speed: 5-	-10 mph		Well Depth	(ft):	
Wind	d Direction: N	-NW	SWL (ft): 33.14			
Pr	ecipitation: N	one		Pump Rate (gp	om):	
C	loud Cover: N	lostly Cloudy		Interval (m	nin):	
Airborne	Particulate: N	one	Well C	asing Diameter	(in): 2	
C	olor, Purge:		Pu	mp Start (HH:M	IM):	
Appeara	nce, Purge:		Pu	mp Stop (HH:M	IM):	
0	dor, Purge:		Purge Volume (gal):			
Col	Color, Sample:		Purging Strategy:			
Appearan	ce, Sample:			Well Plug Pres	ent: 🗆	
Od	or, Sample:			Well Loc	ked: 🗆	

GW CALCULATIONS:

Interval calculations not performed in Field Buddy. Pumping calculations not performed in Field Buddy. Top of Casing Elevation 1494.41 - Static Water Level 33.14 = 1461.27ft

SECTION #3: STABILIZATION

Stabilization not Performed at this Location

Stabilization Passes NTS Criteria:

Field Blank: Equip Blank:

Time (HH:MM):	pl (SU)		SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):
11.56	11.56 Static Water Level in Water by Field Measurement, ft					
1443.16	Elevation, G	W (MSL) in Water	by Calculation,	ft		
SECTION #2: O	BSERVATIONS	5		Ti	me: 12:10	
Air Te	mperature:	51°F to 60°F		M	DH#: 817980	
v	Vind Speed:	10-20 mph		Well Depth	(ft):	
Wind	d Direction:	N-NW		SWL	(ft): 11.56	
Pr	ecipitation:	None		Pump Rate (gp	om):	
C	loud Cover:	Mostly Cloudy		Interval (n	nin):	
Airborne	Particulate:	None	Well C	asing Diameter	(in): 2	
C	olor, Purge:		Pu	mp Start (HH:N	IM):	
Appeara	nce, Purge:		Pu	mp Stop (HH:N	IM):	
0	dor, Purge:		I	Purge Volume (gal):	
Col	or, Sample:		Purging Strategy:			
Appearan	ce, Sample:			Well Plug Pres	ent: 🗆	
Od	or, Sample:			Well Loc	ked: 🗆	

GW CALCULATIONS:

Interval calculations not performed in Field Buddy. Pumping calculations not performed in Field Buddy. Top of Casing Elevation 1454.72 - Static Water Level 11.56 = 1443.16ft

SECTION #3: STABILIZATION

Stabilization not Performed at this Location

Stabilization Passes NTS Criteria:

NTS	
-----	--

526 Chestnut Street

Virginia, MN 55792

Comments:

Phone: (218) 741-4290

Calibration Report

Environmental Science & Engineering

Event Key: 6385CC_2020 May(1 of 1)

Staff: Corey Andrews

Date: 5/29/2020

Post Cal Check: 🗹

Sonde: R04-A PreCal PostCal PostEvent Last Temp Check: 12/26/2019 (HH:MM): (HH:MM): (HH:MM): **Temp Specification:** +/-0.1 °C 7:45 7:45 13:45 **Specifications:** 4.25 4.00 4.00 pH: +/-0.2 SU Standard (SU): 4.0 4.0 4.0 Temperature (°C): 23.00 23.00 23.8 7.19 pH: 7.01 6.96 +/-0.2 SU Standard (SU): 7.0 7.0 7.0 **Temperature (°C):** 22.6 22.6 23.0 pH: 10.22 10.02 9.89 +/-0.2 SU Standard (SU): 10.0 10.0 10.0 Temperature (°C): 22.8 22.8 22.9 **Conductance, Specific:** 0.0 0.0 0.0 Sum of Standard (µmhos/cm): 0 0 0 +/-1 µmhos/cm Temperature (°C): 22.7 22.7 AND 28.4 +/-0.5% **Conductance, Specific:** 993.3 1000 1006 Sum of Standard (µmhos/cm): 1000 1000 1000 +/-1 µmhos/cm Temperature (°C): 23.02 23.0 AND 23.02 +/-0.5% **Turbidity:** 2.1 0.0 0.4 <100 +/-1 NTU Standard (NTU): 0 0 0 >100 AND <400 +/-12 NTU >400 AND <3000 +/-150 NTU **Temperature (°C):** 22.9 22.9 22.9 **Turbidity**: 108.2 102.0 103.3 <100 +/-1 NTU Standard (NTU): 102 102 102 >100 AND <400 +/-12 NTU Temperature (°C): >400 AND <3000 +/-150 NTU 23.1 22.9 23.1

Calibration Report (cont'd)

Sonde: R04-A	PreCal	PostCal	PostEvent	
Last Temp Check: 12/26/2019	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Specification: +/-0.1 °C	7:45	7:45	13:45	Specifications:
Oxygen, Dissolved:	8.17	8.17	8.28	<8 +/-0.1 mg/L
100% Oxygen Saturation:	8.19	8.19	8.22	>8 AND <20 +/-0.2 mg/L
Temperature (°C):	22.9	22.9	22.7	>20 +/-10%
Bar.Pressure (mmHg):	725	725	725	
ORP:	430	436	437	 +/-20 mV
Standard (mV):	435.5	435.5	438.5	·/-20111v
Temperature (°C):	23.0	23.0	21.8	

5/29/2020 Gen Wast Spring CCR Well Monitoring 638500 oray Andrews ligh 64°F/Mostly Cloudy/ Winds NNW 15 mph 730 Prep/Cal/Load. 833 Depart NTS office. 1920 [mw7] Well locked, plugged i in good condition. Key #2106 we Vol Pomp Rate SWL TWD 5.98' 0.97 26.63' 0.125 GPM 20,65 0937 Begin pumping. 1026 Sample obtained. 1027 Dup. 1005 F.B. eH 100 SPL TUIS ORP TEMP Time SWL 387 6.36 0.09 0945 2858 144.5 10.58 21.60' 21.61 350 1953 6.24 0.00 2896 49.2 16.48 22.7 313 10.61 21.65 1001 6.25 0.00 2913 293) 17.5 293 10.70 21.67' 6.20 0.00 1009 288 10.58 21.68 1017 6.27 0.00 2948 18.1 6.27 0.00 2958 1025 23.4 280 10.60 21.68' * Turbidity slightly out of stabilization specifications. Was beginning to bounce up and down with the last 3 well volumos. SWL: 33,14' 043 (mw8) 052 [mw10] Well locked, plugged & in good condition. Key #2121 TWO WE Vol Pump Rate SWL 10.01 18.20' 8.19 1.3 0.50 GPM 1104 Begin pumpiny. 1126 Sample obtained. Time pH LOO SPL Turb ORP SWL Temp 7.12 0.00 1107 1053 28.6 321 4-41 10.75 1056 23.9 315 4.43 1(10 7.01 0.00 10.80 1065 14.9 306 6.96 0.00 4.39 1113 10.79 1116 6.91 0.00 1067 10.8 298 4.42 10.77 0.00 1067 9.8 289 4.46 0.00 1062 9.5 284 4.42 1119 6.92 10.77 6.93 0.00 1062 1122 10.78 9.1 279 4.39 10.77 1125 6.91 0.00 1065 *Interior well casing elevation: 1452.616' H: 0.024' V: 0.042' * Northing: 150980.648' Easting: 346318.105' * Ground Elevation: 1449.801' H:0.033' V:0.051' Unique well #847-087 10 mw9 | SWL: 11.56' 210 Bench mark check @ Station 3116 BC: 1494.120' actual: 1494, 121 233 -322 Code samples to PACE. 326 Arrive back at NTS office. Unloud Post check / Report. 0.0 oreif Page 10 of 16

NTS 526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290	Vehicle Inspection Rep Event Key: 6385CC_2020 Ma	
Driver: Corey Andrews Vehicle: V62 - 2014 GMC Sierra		/29/2020 Time: 07:43 Odometer:
Check each Item Inspected		
Driver/Passenger Side External Side Mirrors (Right and Left): Comments:	Windows ✓ (clean; free of cracks):	Tires ✓ (properly inflated, adequate tread): ✓
0	Head LightsFluid Leaks	
Routine Maintenance Oil Change (Current): Gauges Operational ('check engine' light OFF): Comments:	Spare Tire	
Seat Belts	 ✓ Brakes: Parking Brake ✓ (reset/release): 	Rearview Mirror: 🗹
General/Safety Insurance Card: Operator's Manual: Comments:	 ✓ Wheel Chocks: ✓ Strobe Light (if needed): 	Buggy Whip

Deficiencies Corrected

Daily Tailgate Safety

Project: <u>6385(C</u>	Date: _5/29/2020
Work Site Hazard Assessment Works	heet
PPE Required (List): High	1/2
Weather Conditions (List):	Level*
U Vehicular Traffic	Communications
🗇 Noise	
Housekeeping	Equipment/Tools Other Site Hazards**
	and hazards found are listed below with corrective action
Hazards Identified/Safety Items Discus	ised:
Cizles	
check for ticles post	Field event.
Participants in Safety Discussion:	
Print Name	Signature
2.	treef Ind
3.	
4	
5	\bigcap
Signature of Site Supervisor/Examiner:	Oren Date: 5/29/2020
*Level D, C, B or A	\Box

**Examples: Heavy Equipment, Air Quality, Flammable materials, Wildlife, Work Site Security, Confined Space

								TIME: 1322	5/29/20
						TEMP.AT ARRIVAL:		NUX	RECEIVED FOR LAB BY:
		TIME:					TIME:		
		DATE:		BY:	3 SAMPLE LOCKUP	RECEIVED FROM NTS SAMPLE LOCKUP BY:	DATE:		RELINQUISHED TO NTS SAMPLE LOCK-UP BY:
		TIME:					TIME: 1522		acent wheet
		DATE:				RECEIVED BY:	DATE: 5 29/20 RECEIVED BY		REALING UISHED BY
Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS	Boron, Calcium, Chlori		Z		/005 ×	5/29/20	Field Blank	Field Blank	
Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS	Boron, Calcium, Chlori	-	Z		× £701	5/29/20	GW WELL	Field Duplicate	
Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Flouride, Chloride, Sulfate, TDS, pH, Radium 226 & 228 combined	Antimony, Arsenic, Ba Lead, Lithium, Mercun TDS, pH, Radium 226	N	Z N		× 97211	5/29/20 1	GW WELL	MW10	
Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS	Boron, Calcium, Chlori	_	Z		1026 ×	5 29/20	GW WELL	MW7	
8.	REQUIRED ANALYSIS:	-		RIX SOL.	TIME: LIQ. S	DATE: TI	DESCRIPTION:	SAMPLE #	LOG-IN #
		GENER/			y-20		G, LLC.	SPOSAL and RECYCLIN	PROJECT: GENERAL WASTE DISPOSAL and RECYCLING, LLC PROJECT NUMBER: 6385CC CCR Monitorm
		al Chi 'Al Me			SW-620-002	PERMIT REQ .: SI		Andrews	SAMPLER: Jorey Ans
ATTAC	SEE	EMISTRY (NO PRES) EMISTRY (H2SO4) ETALS (HN03) METALS (HN03)	8260 (HCL) MISTRY (NO PRES)	OSEN &	DENNIS SCHUBBE, KARISSA VOSEN & SCOTT SEELEY	DENNIS SCHU SC	Ë	DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA	DEMOLITION 8 ITASCA CO
SPECIAL INSTRUCTIONS:	<u>72</u>	YPE & # CONTAINERS	TYPE	Sultra -		REPORT TO:			CLIENT NAME, ADDRESS, PHONE#:
					41-4291	VIRGINIA, MN 55792 11-4290 Fax: (218) 741-4291	VIRGIN (218) 741-4290		Environmental Science & Engineering
	CHAIN O		REO			NTS 526 CHESTNUT STREET	526 C		
			-					-	

Page 13 of 16

GENERAL WASTE CCR METHODS

4	
SYMBOL	EPA Method
В	200.8
Ca	200.7
Chloride	300.0
Flouride	300.0
рН	SM 4500 H+B
SO ₄	300.0
TDS ·	SM 2540C
	SYMBOL B Ca Chloride Flouride pH SO ₄

GENERAL WASTE CCR METHODS - MW10

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Са	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C
Antimony	Sb	200.8
Arsenic	As	200.8
Barium	Ва	200.7
Berylium	Ве	200.8
Cadmium	Cd	200.8
Chromium	Cr	200.8
Cobalt	Со	200.8
Lead	Pb	200.8
Lithium	Li	200.8
Mercury	Hg	245.1
Molybdenum	Мо	200.8
Selenium	Se	200.8
Thallium	Ti	200.8
Radium 226	Ra	7500-Ra B
Radium 228	Ra	7500-Ra D

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Report Peer Review Report

Event Key: 6385CC_2020 May(1 of 1) Report Date: 5/29/2020 Lab WO#: 12144685

Reviewer #1:	Date:
Jonathan Novak	6/5/2020

Reviewer #2:	Date:
Terri Sabetti	6/3/2020

Report Sections	Required:	Included:
Cover Sheet:		\checkmark
Location Information		
Data Collection:		\checkmark
Observation:	\checkmark	\checkmark
Flow or Stabilization:		
Photographs:		
Calibration:	\checkmark	
Field Notes:	\checkmark	
Safety Forms:		\checkmark
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		
Consistent Values in Notes:		\checkmark
Consistent Dates and Times:		
No Deviations from SOPs:		
Cover Sheet provides a complete description of key activities and observations:		

Reviewer	#1 Coi	mments:

MW7 turbidity qualified for not passing stabilization criteria. Updated MW10 top of casing elevation.

Report Sections	Required :	Included:
Cover Sheet:	\checkmark	\checkmark
Location Information		
Data Collection:	\checkmark	\checkmark
Observation:	\checkmark	\checkmark
Flow or Stabilization:	\checkmark	\checkmark
Photographs:		
Calibration:	\checkmark	\checkmark
Field Notes:	\checkmark	\checkmark
Safety Forms:	\checkmark	\checkmark
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		\checkmark
Consistent Values in Notes:		\checkmark
Consistent Dates and Times:		\checkmark
Qualifiers added to Data:		\checkmark
Data under correct Event Key:		\checkmark
All Req'd Parameters Meas'd; Limits Met:		

Reviewer #2 Comments:

Pace Analytical Services, LLC 315 Chestnut Street Virginia, MN 55792 (218) 735-6700

June 23, 2020

Dennis Schubbe Northeast Technical Services 526 Chestnut Street Virginia, MN 55792

RE: Project: 6385CC General Waste May-20 Pace Project No.: 12144685

Dear Dennis Schubbe:

Enclosed are the analytical results for sample(s) received by the laboratory on May 29, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Greensburg
- Pace Analytical Services Virginia

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Canin fren

Carrie Jensen carrie.jensen@pacelabs.com (218)742-1042 Project Manager

Enclosures

cc: Sample Data, Northeast Technical Services Scott Seeley, NTS Karissa Vosen, NTS

CERTIFICATIONS

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

Pace Analytical Services Virginia Minnesota

315 Chestnut Street, Virginia, MN 55792 Montana Certificate #CERT0103 Alaska Certification UST-107 Minnesota Dept of Health Certification #: 027-137-445

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Marvland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

Lab ID	Sample ID	Matrix	Date Collected	Date Received
12144685001	MW7	Water	05/29/20 10:26	05/29/20 13:22
12144685002	MW10	Water	05/29/20 11:26	05/29/20 13:22
12144685003	Field Duplicate	Water	05/29/20 10:27	05/29/20 13:22
12144685004	Field Blank	Water	05/29/20 10:05	05/29/20 13:22

SAMPLE ANALYTE COUNT

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

Lab ID	Sample ID Method		Analysts	Analytes Reported	Laboratory
12144685001	 MW7	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	AP	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	DMB	3	PASI-V
12144685002	MW10	EPA 200.7	AK1	2	PASI-V
		EPA 200.8	DES	12	PASI-V
		EPA 245.1	AK1	1	PASI-V
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2540 C-2011	AP	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	DMB	3	PASI-V
12144685003	Field Duplicate	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	AP	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	DMB	3	PASI-V
2144685004	Field Blank	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	AP	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	DMB	3	PASI-V

PASI-PA = Pace Analytical Services - Greensburg PASI-V = Pace Analytical Services - Virginia

ANALYTICAL RESULTS

Project: 6385CC General Waste May-20

Sample: MW7	Lab ID: 121	44685001	Collected: 05/29/2	0 10:26	Received: 05	/29/20 13:22 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica		0.7 Preparation Meth Virginia	nod: EF	PA 200.7			
Calcium	583	mg/L	0.50	1	06/09/20 09:50	06/10/20 13:07	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica		0.8 Preparation Meth	nod: EF	PA 200.8			
Boron	64.7	ug/L	40.0	1	06/09/20 09:50	06/11/20 12:09	7440-42-8	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	2590	mg/L	20.0	1		05/29/20 17:38		
4500H+ pH, Electrometric	Analytical Met Pace Analytica							
pH at 25 Degrees C	7.5	Std. Units	0.10	1		06/02/20 20:57		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Chloride	15.8	mg/L	1.0	1		06/02/20 22:15	16887-00-6	
Fluoride	ND	mg/L	0.10	1		06/02/20 22:15	16984-48-8	
Sulfate	1420	mg/L	20.0	10		06/02/20 22:36	14808-79-8	
Sample: MW10	Lab ID: 121	44685002	Collected: 05/29/2	0 11:26	Received: 05	/29/20 13:22 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica		0.7 Preparation Meth Virginia	nod: EF	PA 200.7			
Barium	50.7	ug/L	10.0	1	06/09/20 09:50	06/10/20 13:09	7440-39-3	
Calcium	168	mg/L	0.50	1	06/09/20 09:50	06/10/20 13:09	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica		0.8 Preparation Meth Virginia	nod: EF	PA 200.8			
Antimony	ND	ug/L	1.0	1	06/09/20 09:50	06/11/20 12:12	7440-36-0	
Arsenic	ND	ug/L	1.0	1	06/09/20 09:50	06/11/20 12:12	7440-38-2	
Beryllium	ND	ug/L	0.30	1	06/09/20 09:50	06/11/20 12:12	7440-41-7	
Boron	ND	ug/L	40.0	1		06/11/20 12:12		
Cadmium	ND	ug/L	0.20	1		06/11/20 12:12		
Chromium	ND	ug/L	1.5	1		06/11/20 12:12		
Cobalt	0.80	ug/L	0.20	1		06/11/20 12:12		
Lead	ND	ug/L	0.50	1		06/11/20 12:12		
Lithium	ND	ug/L	10.0	1		06/11/20 12:12		
Molybdenum	0.98	ug/L	0.30	1		06/11/20 12:12		
	0.98 ND ND	ug/L ug/L ug/L	0.30 1.0 0.020	1 1 1	06/09/20 09:50	06/11/20 12:12 06/11/20 12:12 06/11/20 12:12	7782-49-2	

ANALYTICAL RESULTS

Project: 6385CC General Waste May-20

Pace Project No.: 12144685								
Sample: MW10	Lab ID: 121	44685002	Collected: 05/29	/20 11:26	8 Received: 05	5/29/20 13:22 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
245.1 Mercury	Analytical Meth Pace Analytica		5.1 Preparation M Virginia	ethod: Ef	PA 245.1			
Mercury	ND	ug/L	0.10) 1	06/10/20 10:45	06/11/20 11:37	7439-97-6	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	806	mg/L	20.0) 1		05/29/20 17:38		
4500H+ pH, Electrometric	Analytical Meth Pace Analytica							
pH at 25 Degrees C	7.7	Std. Units	0.10) 1		06/02/20 20:41		H6
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Chloride	1.4	mg/L	1.0			06/03/20 05:24	16887-00-6	
Fluoride	0.14	mg/L	0.10			06/03/20 05:24		
Sulfate	360	mg/L	20.0) 10		06/03/20 06:28	14000-79-0	
Sample: Field Duplicate	Lab ID: 121	44685003	Collected: 05/29	/20 10:27	Received: 05	5/29/20 13:22 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Meth Pace Analytica		0.7 Preparation M Virginia	ethod: Ef	PA 200.7			
Calcium	616	mg/L	0.50) 1	06/09/20 09:50	06/10/20 13:11	7440-70-2	
200.8 MET ICPMS	Analytical Meth Pace Analytica		0.8 Preparation M Virginia	ethod: Ef	PA 200.8			
Boron	64.6	ug/L	40.0) 1	06/09/20 09:50	06/11/20 12:16	7440-42-8	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	2670	mg/L	20.0) 1		05/29/20 17:38		
4500H+ pH, Electrometric	Analytical Meth Pace Analytica							
pH at 25 Degrees C	7.4	Std. Units	0.10) 1		06/02/20 20:47		H6
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Chloride	15.8	mg/L	1.0			06/03/20 07:32	16887-00-6	
Fluoride	ND	mg/L	0.10			06/03/20 07:32		
Sulfate	1420	mg/L	20.0) 10		06/03/20 08:37	14808-79-8	

ANALYTICAL RESULTS

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

Sample: Field Blank	Lab ID: 121	44685004	Collected: 05/29/	20 10:05	Received: 05	5/29/20 13:22 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Meth Pace Analytica		0.7 Preparation Me Virginia	thod: EF	PA 200.7			
Calcium	ND	mg/L	0.50	1	06/09/20 09:50	06/10/20 13:13	7440-70-2	
200.8 MET ICPMS	Analytical Meth Pace Analytica		0.8 Preparation Me Virginia	thod: EF	PA 200.8			
Boron	ND	ug/L	40.0	1	06/09/20 09:50	06/11/20 12:20	7440-42-8	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	ND	mg/L	10.0	1		05/29/20 17:38		
4500H+ pH, Electrometric	Analytical Meth Pace Analytica							
pH at 25 Degrees C	5.5	Std. Units	0.10	1		06/02/20 20:44		H6
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Chloride Fluoride Sulfate	ND ND ND	mg/L mg/L mg/L	1.0 0.10 2.0	1 1 1		06/03/20 08:58 06/03/20 08:58 06/03/20 08:58	16984-48-8	

Project:	6385CC General V	Vaste May-20										
Pace Project No.:	12144685											
QC Batch:	190904		Analy	sis Metho	d: E	EPA 245.1						
QC Batch Method:	EPA 245.1		Analy	/sis Descri	ption: 2	245.1 Mercu	ury					
			Labo	ratory:	F	Pace Analyt	ical Service	es - Virgini	а			
Associated Lab Sar	mples: 121446850	002										
METHOD BLANK:	751305			Matrix: W	/ater							
Associated Lab Sar	mples: 121446850	002										
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	yzed	Qualifier	S			
Mercury		ug/L		ND	0.10	06/11/2	0 11:32					
,		· J										
,												
LABORATORY CO	NTROL SAMPLE:	751306										
	NTROL SAMPLE:	0	Spike	LC	cs	LCS	% R	ec				
		0	Spike Conc.	LC		LCS % Rec	% Ri Limi		Qualifiers			
LABORATORY CO		751306	Conc.				Limi		Qualifiers			
LABORATORY COI Parar		751306 Units	Conc.	Re	sult	% Rec	Limi	ts	Qualifiers			
LABORATORY CO Parar Mercury		751306 Units ug/L	Conc.	Re:	sult	% Rec	Limi	ts	Qualifiers	_		
LABORATORY CO Parar Mercury	neter	751306 Units ug/L LICATE: 7513	O7 MS	2 Res	sult 1.8 751308	% Rec 8	_ Limi B & {	ts		_		
LABORATORY COI Parar Mercury MATRIX SPIKE & M	neter MATRIX SPIKE DUP	751306 Units ug/L LICATE: 7513 12144685002	O7 MS Spike	2 Res 2 MSD Spike	sult 1.8 751308 MS	% Rec 84 MSD	B Limi B 8	ts 85-115 MSD	% Rec	_	Max	
LABORATORY CO Parar Mercury	neter MATRIX SPIKE DUP	751306 Units ug/L LICATE: 7513	O7 MS	2 Res	sult 1.8 751308	% Rec 8	_ Limi B & {	ts		RPD	Max RPD 20	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	6385CC Ge	eneral Was	te May-20										
Pace Project No.:	12144685												
QC Batch:	190782			Analy	sis Metho	d: l	EPA 200.7						
QC Batch Method:	EPA 200.7	7		Analy	/sis Descri	ption: 2	200.7 MET						
				Labo	ratory:	I	Pace Analyti	cal Service	es - Virginia	i			
Associated Lab Sa	mples: 12	144685001	, 1214468500	2, 1214468	5003, 121	44685004							
METHOD BLANK:	750706				Matrix: W	/ater							
Associated Lab Sa	mples: 12'	144685001	, 1214468500	2, 1214468	5003, 121	44685004							
				Blar	nk	Reporting							
Para	meter		Units	Res	ult	Limit	Analy	zed	Qualifiers	6			
			ug/L		ND	10.	0 06/10/20) 13:03					
Barium													
Barium Calcium			mg/L		ND	0.5	0 06/10/20) 13:03					
Calcium	NTROL SAM	PLE: 75	-	Spike Conc.	ND LC Res	S	0 06/10/20 LCS % Rec) 13:03 % Re Limit		Qualifiers			
Calcium LABORATORY CO Para Barium		PLE: 75	mg/L 0707 Units ug/L	Conc. 25	LC Res	S sult	LCS % Rec 104	% Re Limit	ts (35-115	Qualifiers			
Calcium LABORATORY CO Para		PLE: 75	mg/L 0707 Units	Conc.	LC Res	CS sult	LCS % Rec	% Re Limit	ts C	Qualifiers			
Calcium LABORATORY CO Para Barium	meter		mg/L 0707 Units ug/L mg/L	Conc. 25 25.	LC Res	S sult	LCS % Rec 104	% Re Limit	ts (35-115	Qualifiers	_		
Calcium LABORATORY CO Para Barium Calcium	meter		mg/L 0707 Units ug/L mg/L	Conc. 25 25.	LC Res	260 26.1	LCS % Rec 104	% Re Limit	ts (35-115	Qualifiers	_		
Calcium LABORATORY CO Para Barium Calcium	meter	E DUPLIC	mg/L 0707 Units ug/L mg/L	Conc. 25 25. 08	LC Res 0 2	260 26.1	LCS % Rec 104	% Re Limit	ts (35-115	Qualifiers % Rec	_	Max	
Calcium LABORATORY CO Para Barium Calcium	meter MATRIX SPIK	E DUPLIC	mg/L 0707 Units ug/L mg/L :ATE: 7507	Conc. 25 25. 08 MS	LC Res 0 2 MSD	250 sult 260 26.1 750709	LCS % Rec 104 103	% Re Limit { 	ts () 35-115 35-115		RPD	Max RPD	Qual
Calcium LABORATORY CO Para Barium Calcium MATRIX SPIKE & I	meter MATRIX SPIK	E DUPLIC	mg/L 0707 Units ug/L mg/L :ATE: 7507 2145158001	08 MS Spike	LC Res 0 2 MSD Spike	260 26.1 750709 MS	LCS % Rec 104 103 MSD	% Re Limit 3 & E 3 & E	ts (35-115 35-115 MSD	% Rec			Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6385CC General Waste May-20

Pace Project No.: 1214	4685
------------------------	------

···· · · · · · · · · · · · · · · · · ·			
QC Batch:	190783	Analysis Method:	EPA 200.8
QC Batch Method:	EPA 200.8	Analysis Description:	200.8 MET
		Laboratory:	Pace Analytical Services - Virginia
			· ·

Associated Lab Samples: 12144685001, 12144685002, 12144685003, 12144685004

METHOD BLANK: 75071	0	Matrix:	Water		
Associated Lab Samples:	12144685001, 12144685002,	12144685003, 12	2144685004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	ND	1.0	06/11/20 12:01	
Arsenic	ug/L	ND	1.0	06/11/20 12:01	
Beryllium	ug/L	ND	0.30	06/11/20 12:01	
Boron	ug/L	ND	40.0	06/11/20 12:01	
Cadmium	ug/L	ND	0.20	06/11/20 12:01	
Chromium	ug/L	ND	1.5	06/11/20 12:01	
Cobalt	ug/L	ND	0.20	06/11/20 12:01	
Lead	ug/L	ND	0.50	06/11/20 12:01	
Lithium	ug/L	ND	10.0	06/11/20 12:01	
Molybdenum	ug/L	ND	0.30	06/11/20 12:01	
Selenium	ug/L	ND	1.0	06/11/20 12:01	
Thallium	ug/L	ND	0.020	06/11/20 12:01	

LABORATORY CONTROL SAMPLE: 750711

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L		10.5	105	85-115	
Arsenic	ug/L	50	52.1	104	85-115	
eryllium	ug/L	10	11.4	114	85-115	
oron	ug/L	50	52.7	105	85-115	
admium	ug/L	25	26.6	106	85-115	
hromium	ug/L	50	52.4	105	85-115	
obalt	ug/L	25	26.5	106	85-115	
ad	ug/L	50	53.9	108	85-115	
hium	ug/L	50	55.0	110	85-115	
blybdenum	ug/L	10	10.3	103	85-115	
elenium	ug/L	50	53.1	106	85-115	
allium	ug/L	1	1.1	109	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 7507	12		750713							
Parameter	Units	12144914003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	ND	10	10	10.9	11.0	108	108	70-130	1	20	
Arsenic	ug/L	1.4	50	50	54.4	53.7	106	105	70-130	1	20	
Beryllium	ug/L	ND	10	10	11.1	11.0	111	110	70-130	1	20	
Boron	ug/L	102	50	50	154	156	104	107	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 7507	12 MS	MSD	750713							
	1	2144914003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	ND	25	25	26.4	25.8	106	103	70-130	2	20	
Chromium	ug/L	ND	50	50	51.9	51.2	103	102	70-130	1	20	
Cobalt	ug/L	0.23	25	25	27.1	26.8	107	106	70-130	1	20	
Lead	ug/L	ND	50	50	54.0	53.8	108	107	70-130	0	20	
Lithium	ug/L	ND	50	50	61.7	61.9	108	108	70-130	0	20	
Molybdenum	ug/L	1.0	10	10	11.9	11.9	109	109	70-130	1	20	
Selenium	ug/L	ND	50	50	54.8	53.9	109	107	70-130	2	20	
Thallium	ug/L	ND	1	1	1.1	1.1	109	110	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	6385CC General 12144685	Waste May-20						
QC Batch:	190179		Analysis Me	ethod:	SM 2540 C-20	11		
QC Batch Method:	SM 2540 C-2011	l	Analysis De	escription:	2540C Total D	issolved Solids		
			Laboratory:		Pace Analytica	al Services - Vir	ginia	
Associated Lab Sam	nples: 12144685	001, 12144685002,	12144685003,	12144685004				
METHOD BLANK:	748187		Matrix	: Water				
Associated Lab Sam	nples: 12144685	001, 12144685002,	12144685003,	12144685004				
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyze	ed Qual	fiers	_
Total Dissolved Solid	ds	mg/L	ND	0 10	.0 05/29/20 1	7:38		
METHOD BLANK:		004 4044005000		Water				
Associated Lab Sam	ipies. 12144685	001, 12144685002,	-					
Param	neter	Units	Blank Result	Reporting Limit	Analyze	ed Qual	fiers	
Total Dissolved Solid	ds	mg/L	ND	10	.0 05/29/20 1	7:38		_
LABORATORY CON	NTROL SAMPLE:	748188						
			Spike	LCS	LCS	% Rec		
Param	neter	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Total Dissolved Solid	ds	mg/L	250	248	99	80-120		
SAMPLE DUPLICAT	TE: 748189							
Param	notor	Units	12144612001 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solid	as	mg/L	1640) 165	bU	1	5	
SAMPLE DUPLICAT	TE: 748190					• -		
Param	neter	Units	12144685001 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solid		mg/L	2590			1	5	
		-						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	6385CC General	Waste May-20					
Pace Project No.:	12144685						
QC Batch:	190325		Analysis M	ethod:	SM 4500-H+ B	-2011	
QC Batch Method:	SM 4500-H+ B-	2011	Analysis De	escription:	4500H+B pH		
			Laboratory	:	Pace Analytica	I Services - Vir	ginia
Associated Lab Sar	nples: 1214468	5001, 1214468500	2, 12144685003,	12144685004	1		
LABORATORY CO	NTROL SAMPLE:	748814					
_			Spike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
pH at 25 Degrees C	;	Std. Units	7	7.0	100	98-102	H6
SAMPLE DUPLICA	TE: 748815						
			12144817001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
i aiai							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 1902	05		Anol	ysis Metho	۰. c	PA 300.0						
QC Batch Method: EPA:				ysis Metrio ysis Descri		600.0 IC An	ione					
QC Datch Methou. EFA	300.0			vatory:		Pace Analyt			-			
Associated Lab Samples:	121446850	001	Labu	natory.	I	ace Analyt		es - virginia	a			
METHOD BLANK: 748634	4			Matrix: W	ater							
Associated Lab Samples:	121446850	001										
			Bla	nk	Reporting							
Parameter		Units	Res	ult	Limit	Analy	/zed	Qualifier	S			
Chloride		mg/L		ND	1.(06/02/2	0 11:30					
Fluoride		mg/L		ND	0.10	06/02/2	0 11:30					
Sulfate		mg/L		ND	2.0	06/02/2	0 11:30					
LABORATORY CONTROL	SAMPLE:	748635										
			Spike	LC	S	LCS	% R	ec				
Parameter		Units	Conc.	Res	ult	% Rec	Limi	ts (Qualifiers			
Chloride		mg/L	5	50	50.9	102	2 9	90-110		_		
Fluoride		mg/L		5	5.3	10	6 9	90-110				
Sulfate		mg/L	5	50	50.7	10 ⁻	1 9	90-110				
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 7486	36		748637							
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 7486	36 MS	MSD	748637							
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 7486 12144637001		MSD Spike	748637 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX Parameter	SPIKE DUPI		MS			MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Parameter	Units	12144637001 Result 	MS Spike Conc. 50	Spike Conc. 50	MS Result 196	Result 196	% Rec 96	% Rec 97	Limits 90-110	0	RPD 20	Qual
Parameter Chloride Fluoride	Units mg/L mg/L	12144637001 Result 147 0.28	MS Spike Conc. 50 5	Spike Conc. 50 5	MS Result 196 5.3	Result 196 5.4	% Rec 96 101	% Rec 97 102	Limits 90-110 90-110	0	RPD 20 20	Qual
Parameter Chloride Fluoride	Units	12144637001 Result 	MS Spike Conc. 50	Spike Conc. 50	MS Result 196	Result 196	% Rec 96	% Rec 97	Limits 90-110	0	RPD 20 20	Qual
Parameter	Units mg/L mg/L mg/L	12144637001 Result 147 0.28 4.0	MS Spike Conc. 50 5 50	Spike Conc. 50 5	MS Result 196 5.3	Result 196 5.4	% Rec 96 101	% Rec 97 102	Limits 90-110 90-110	0	RPD 20 20	Qual
Parameter Chloride Fluoride Sulfate	Units mg/L mg/L mg/L	12144637001 Result 147 0.28 4.0	MS Spike Conc. 50 5 50	Spike Conc. 50 5	MS Result 196 5.3 54.5	Result 196 5.4 54.8	% Rec 96 101	% Rec 97 102	Limits 90-110 90-110	0	RPD 20 20	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	12144637001 Result 147 0.28 4.0 LICATE: 7486 12144750001	MS Spike Conc. 50 5 50 38 MS Spike	Spike Conc. 50 5 50 Sol Spike	MS Result 196 5.3 54.5 748639 MS	Result 196 5.4 54.8 MSD	% Rec 96 101 101	% Rec 97 102 102 MSD	Limits 90-110 90-110 90-110 % Rec	001	RPD 20 20 20 Max	
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX Parameter	Units mg/L mg/L mg/L SPIKE DUPI	12144637001 Result 147 0.28 4.0 LICATE: 7486 12144750001 Result	MS Spike Conc. 50 5 50 38 MS Spike Conc.	Spike Conc. 50 5 50 50 MSD Spike Conc.	MS Result 196 5.3 54.5 748639 MS Result	Result 196 5.4 54.8 MSD Result	% Rec 96 101 101 101 MS % Rec	% Rec 97 102 102 MSD % Rec	Limits 90-110 90-110 90-110 90-110 % Rec Limits	0 0 1 RPD	RPD 20 20 20 Max RPD	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	12144637001 Result 147 0.28 4.0 LICATE: 7486 12144750001	MS Spike Conc. 50 5 50 38 MS Spike	Spike Conc. 50 5 50 Sol Spike	MS Result 196 5.3 54.5 748639 MS	Result 196 5.4 54.8 MSD	% Rec 96 101 101	% Rec 97 102 102 MSD	Limits 90-110 90-110 90-110 % Rec	001	RPD 20 20 20 20 Max RPD 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QC Batch:	1903	09		Analy	ysis Method	d: E	PA 300.0						
QC Batch Me		300.0			ysis Descrij		00.0 IC Ani	ions					
		000.0		•	pratory:				es - Virgini	а			
Associated La	ab Samples:	121446850	02, 1214468500		•		acc, mary		iee riigiiii	4			
METHOD BL/	ANK: 74871	5			Matrix: W	ater							
Associated La	ab Samples:	121446850	02, 1214468500	3, 1214468	35004								
				Blai	nk l	Reporting							
	Parameter		Units	Res	ult	Limit	Analy	/zed	Qualifier	S			
Chloride			mg/L		ND	1.0	06/03/20	0 00:02					
Fluoride			mg/L		ND	0.10							
Sulfate			mg/L		ND	2.0	06/03/20	0 00:02					
ABORATOR	Y CONTROL	SAMPLE:	748716										
	_			Spike	LC		LCS	% R					
	Parameter		Units	Conc.	Res	ult	% Rec	Lim	its	Qualifiers	_		
Chloride			mg/L	5	50	50.4	101		90-110				
Fluoride			mg/L	_	5	5.1	102		90-110				
Sulfate			mg/L	5	50	50.6	101	I	90-110				
MATRIX SPIK	KE & MATRIX	SPIKE DUPI	LICATE: 7487	-		748720							
MATRIX SPIK	KE & MATRIX	SPIKE DUPI		MS	MSD								
-			12144685002	MS Spike	Spike	MS	MSD Bosult	MS % Roc	MSD	% Rec	חסס	Max	0.12
Para	KE & MATRIX	Units	12144685002 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Para		Units 	12144685002 Result 1.4	MS Spike Conc. 50	Spike Conc. 50	MS Result 51.5	Result 52.1	% Rec 100	% Rec 101	Limits 90-110	1	RPD 20	Qua
Para Chloride Fluoride		Units mg/L mg/L	12144685002 Result 1.4 0.14	MS Spike Conc. 50 5	Spike Conc. 50 5	MS Result 51.5 5.3	Result 52.1 5.3	% Rec 100 102	% Rec 101 104	Limits 90-110 90-110	1 1	RPD 20 20	Qua
Para Chloride Fluoride		Units 	12144685002 Result 1.4	MS Spike Conc. 50	Spike Conc. 50	MS Result 51.5	Result 52.1	% Rec 100	% Rec 101 104	Limits 90-110 90-110	1	RPD 20 20	Qua
Para Chloride Fluoride Sulfate		Units mg/L mg/L mg/L	12144685002 Result 1.4 0.14 360	MS Spike Conc. 50 5 500	Spike Conc. 50 5 500	MS Result 51.5 5.3	Result 52.1 5.3	% Rec 100 102	% Rec 101 104	Limits 90-110 90-110	1 1	RPD 20 20	Qua
Para Chloride Fluoride Sulfate	ameter	Units mg/L mg/L mg/L	12144685002 Result 1.4 0.14 360 LICATE: 7487	MS Spike Conc. 50 5 500 21 MS	Spike Conc. 50 5 500 MSD	MS Result 51.5 5.3 869 748722	Result 52.1 5.3 878	% Rec 100 102 102	% Rec 101 104 104	Limits 90-110 90-110 90-110	1 1	RPD 20 20 20	Qua
Para Chloride Fluoride Sulfate MATRIX SPIK	ameter KE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	12144685002 Result 1.4 0.14 360 LICATE: 7487 12144800002	MS Spike Conc. 50 5 500 21 MS Spike	Spike Conc. 50 5 500 MSD Spike	MS Result 51.5 5.3 869 748722 MS	Result 52.1 5.3 878 MSD	% Rec 100 102 102 MS	% Rec 101 104 104 MSD	Limits 90-110 90-110 90-110 % Rec	1 1 1	RPD 20 20 20 20	
Para Chloride Fluoride Sulfate MATRIX SPIK Para	ameter	Units mg/L mg/L mg/L SPIKE DUPI	12144685002 Result 1.4 0.14 360 LICATE: 7487 12144800002 Result	MS Spike Conc. 50 5 500 21 MS Spike Conc.	Spike Conc. 50 5 500 MSD Spike Conc.	MS Result 51.5 5.3 869 748722 MS Result	Result 52.1 5.3 878 MSD Result	% Rec 100 102 102 MS % Rec	% Rec 101 104 104 MSD % Rec	Limits 90-110 90-110 90-110 90-110 % Rec Limits	1 1 1 RPD	RPD 20 20 20 Max RPD	Qua
Para Chloride Fluoride Sulfate MATRIX SPIK	ameter KE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	12144685002 Result 1.4 0.14 360 LICATE: 7487 12144800002	MS Spike Conc. 50 5 500 21 MS Spike	Spike Conc. 50 5 500 MSD Spike	MS Result 51.5 5.3 869 748722 MS	Result 52.1 5.3 878 MSD	% Rec 100 102 102 MS	% Rec 101 104 104 MSD % Rec 102	Limits 90-110 90-110 90-110 90-110 % Rec Limits 90-110	1 1 1	RPD 20 20 20 20 20 8 8 8 8 7 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	6385CC Gen	eral Waste May-20							
Pace Project No.:	12144685								
Sample: MW10 PWS:		Lab ID: 12144 Site ID:	685002	Collected: Sample T	05/29/20 11:26 /pe:	Received:	05/29/20 13:22	Matrix: Water	
Param	ieters	Method	A	ct ± Unc (MD	C) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	ervices -	Greensburg					
Radium-226		EPA 903.1		28 ± 0.428 A T:94%	(0.874)	pCi/L	06/19/20 16:4	7 13982-63-3	
		Pace Analytical S	ervices ·	Greensburg	I				
Radium-228		EPA 904.0		9 ± 0.421 (0 % T:81%	.891)	pCi/L	06/17/20 13:12	2 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	6385CC General	Waste May-20				
Pace Project No.:	12144685					
QC Batch:	399221	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 2	04.0 Radium 228		
		Laboratory:	Pace Analytical	Services - Greensbu	ırg	
Associated Lab Sa	mples: 1214468	5002				
METHOD BLANK:	1933397	Matrix: Water				
Associated Lab Sa	mples: 1214468	5002				
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228		0.387 ± 0.399 (0.828) C:73% T:83%	pCi/L	06/17/20 13:12		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	6385CC General	Naste May-20			
Pace Project No.:	12144685				
QC Batch:	399220	Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1	Analysis Description:	903.1 Radium-2	226	
		Laboratory:	Pace Analytical	Services - Greensbu	rg
Associated Lab Sa	mples: 12144685	002			
METHOD BLANK:	1933396	Matrix: Water			
Associated Lab Sa	mples: 12144685	002			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.146 ± 0.405 (0.786) C:NA T:83%	pCi/L	06/19/20 17:03	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 6385CC General Waste May-20

Pace Project No.: 12144685

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
12144685001	 MW7	EPA 200.7	190782	EPA 200.7	190889
12144685002	MW10	EPA 200.7	190782	EPA 200.7	190889
12144685003	Field Duplicate	EPA 200.7	190782	EPA 200.7	190889
12144685004	Field Blank	EPA 200.7	190782	EPA 200.7	190889
12144685001	MW7	EPA 200.8	190783	EPA 200.8	190888
12144685002	MW10	EPA 200.8	190783	EPA 200.8	190888
12144685003	Field Duplicate	EPA 200.8	190783	EPA 200.8	190888
12144685004	Field Blank	EPA 200.8	190783	EPA 200.8	190888
12144685002	MW10	EPA 245.1	190904	EPA 245.1	191012
12144685002	MW10	EPA 903.1	399220		
12144685002	MW10	EPA 904.0	399221		
12144685001	MW7	SM 2540 C-2011	190179		
12144685002	MW10	SM 2540 C-2011	190179		
12144685003	Field Duplicate	SM 2540 C-2011	190179		
12144685004	Field Blank	SM 2540 C-2011	190179		
12144685001	MW7	SM 4500-H+ B-2011	190325		
12144685002	MW10	SM 4500-H+ B-2011	190325		
12144685003	Field Duplicate	SM 4500-H+ B-2011	190325		
12144685004	Field Blank	SM 4500-H+ B-2011	190325		
12144685001	MW7	EPA 300.0	190295		
12144685002	MW10	EPA 300.0	190309		
12144685003	Field Duplicate	EPA 300.0	190309		
12144685004	Field Blank	EPA 300.0	190309		

Environmental Science & Engineering	NTS HESTNUT STREET GINIA, MN 55792 90 Fax: (218) 741-4291				CHAIN 0 REQUIRED TURN-AROUND TIME: 2 Weeks from succession					
DEMOLITION & ITASCA COL	GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA		DENNIS SCHUBBE, KARISSA VOSEN & SCOTT SEELEY			VOC M. 8260 (HCL)		101AL METALS (HN03) DISSOLVED METALS (HN03)	ERS SPECIAL INSTRUCTIONS: SEE ATTACHED LIST WITH METHODS	
OJECT: GENERAL WASTE DISP OJECT NUMBER: 6385CC OG-IN #:	OSAL and RECYCLIN CCR Monitoirng SAMPLE #	G, LLC. DESCRIPTION:	COLLE DATE:	May-20 ECTION: TIME:	MATRIX	filtered	GENERA	GENER	DISSO	REQUIRED ANALYSIS:
	MW7	GW WELL	5 29/20	1026	×	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW10	GW WELL	5/29/20	1126	x	N	2		2	Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobal Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Flouride, Chloride, Sulfa TDS, pH, Radium 226 & 228 combined
	Field Duplicate	GW WELL	5/29/20	1027	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Blank	Field Blank	5 29 20	1005	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
INQUISHED BY		DATE: 5/29/20	RECEIVED BY:						DATE: TIME:	
LINQUISHED TO NTS SAMPLE L		DATE: FIME:	RECEIVED FROM	NTS SAMPLE LC	CKUP BY:				DATE: TIME:	
B. Mathu				-	1-4					

GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TD\$	SM 2540C

•

.

1

.

GENERAL WASTE CCR METHODS - MW10

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C
Antimony	Sb	200.8
Arsenic	As	200.8
Barium	Ва	200.7
Berylium	Ве	200.8
Cadmium	Cd	200.8
Chromium	Cr	200.8
Cobalt	Со	200.8
Lead	Pb	200.8
Lithium	ti	200.8
Mercury	Hg	245.1
Molybdenum	Мо	200.8
Selenium	Se	200.8
Thallium	Ti	200.8
Radium 226	Ra	7500-Ra B
Radium 228	Ra	7500-Ra D

1	Card Market	nent Name: n Upon Receipt For	Document Revised: 25Feb2020 m Page 1 of 1
Pace Analytical	Docu	ment No.: -001-rev.14	Issuing Authority: Pace Virginia Minnesota Quality Office
Sample Condition Client Name:		Project #:	WO#: 12144685 PM: CLJ Due Date: 06/12/20
Courier: Fed Ex UPS	USPS Dother:	Client	CLIENT: NTS-Dennis
ustody Seal on Cooler/Box Present?	No Seals Intact	? Yes No	Optional: Proj. Due Date: Proj. Name:
acking Material: Bubble Wrap Bub	ble Bags None	Other:	Temp Blank? Yes No
hermometer Used: 140792808 poler Temp Read °C: <u>2</u> ,4 Cooler Te emp should be above freezing to 6 °C Correction	mp Corrected °C:	Date and Initial	None Samples on ice, cooling process has begun Biological Tissue Frozen? Yes No ANA Is of Person Examining Contents: BM 5/29/6
Chain of Custody Present?	Hes No		nents;
Chain of Custody Filled Out?			
Chain of Custody Relinguished?			
Sampler Name and Signature on COC?			
Samples Arrived within Hold Time?			If Fecal: □<8 hours □ >8, <24 hours □ >24 hours
Short Hold Time Analysis (<72 hr)?			OH
Rush Turn Around Time Requested?	Ves No		
Sufficient Volume?			
Correct Containers Used?	1		
-Pace Containers Used?			
Containers Intact?	1		
Filtered Volume Received for Dissolved Tests?			and a fift on the second field of the first second second second second second
a fail and a day on the Aparthe Concession of the Concession	YesNo		Note if sediment is visible in the dissolved containers.
indicate care, third, to find the matting	VT		
All containers needing acid/base preservation prop preserved?	Ves No	□N/A 13. N	Note samples needing adjustment:
Headspace in Methyl Mercury Container	Yes No	A 14.	
Headspace in VOA Vials (>6mm)?	Yes No	N/A 15	
Trīp Blank Present?	□Yes □No	N/A 15.	
Trip Blank Custody Seals Present?	□Yes □No	N/A	
Pace Trip Blank Lot # (if purchased): LIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:		Date/Tii	Field Data Required? Yes No
SEE EXCEPTION FORM Y N	TEN	ИPERATURE WA	AIVER ON FILE Y N
Project Manager Review: Nikki Qu		VIPERATURE VVA	
			Date: 5/30/20 will be sent to the North Carolina DEHNR Certification Office (i.e. out

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Date: Report Created:

10/5/2020 10/6/2020 2:39:26 PM

Client:

General Waste Disposal & Recovery

NTS Project Name:

CCR Landfill Monitoring Master 2020

NTS Field Personnel:

Corey Andrews

Summary of Services Performed:

Obtained samples at MW7, MW8, MW9, and MW10 at General Waste for the Fall CCR monitoring event. All wells were sampled via the low flow stabilization method. There were no deviations from SOP during sampling. Field Blank and Duplicate sample were obtained at MW10. Samples were ceded to PACE Analytical in Virginia, MN. For additional details see field notes and COC.

Event Key: 6385CC_2020 Oct(1 of 1)

Field Report Cover Sheet

NTS Project Manager: Dennis Schubbe

SECTION #1: DATA COLLECTION Sample Collected

Field Duplicate: Field Duplicate

Field Blank: Field Blank Equip Blank:

Time (HH:MM):	ן (SL	DH DO J): (mg/L	•	Turbidity (NTU):		ORP (mV):	Temp (°C):			
13:07	6.6	56 0.08	8 817.8	1.5		384	12.39			
9.19	Static Wate	er Level in Water	by Field Measure	ment, ft						
1443.426	Elevation, G	Elevation, GW (MSL) in Water by Calculation, ft								
SECTION #2: O	BSERVATION	IS		Ti	me: 12:	26				
Air Te	mperature:	51°F to 60°F		MD	H#: 847	7087				
W	/ind Speed:	10-20 mph		Well Depth	(ft): 18.	20				
Wind	d Direction:	W-SW		SWL	(ft): 9.1	.9				
Pro	ecipitation:	None		Pump Rate (gp	m): 0.3	3				
C	loud Cover:	Clear		Interval (m	in): 4.4	-6				
Airborne I	Particulate:	None	Well C	Casing Diameter	(in): 2					
Co	olor, Purge:	Colorless	Pu	mp Start (HH:M	M): 12:	42				
Appeara	nce, Purge:	Clear	Ρι	ımp Stop (HH:M	M): 13:	12				
0	dor, Purge:	None		Purge Volume (g	gal): 9.9	0				
Col	or, Sample:	Colorless		Purging Strate	egy: Lov	w-Flow St	abilization			
Appearan	ce, Sample:	Clear		Well Plug Pres	ent: 🗹					
Ode	or, Sample:	None		Well Lock	ked: 🗹					

GW CALCULATIONS:

Total Water Depth 18.20ft - Static Water Level 9.19ft = Water Column 9.01ft Water Column 9.01ft x *Conversion Factor 0.163gal/ft = Well Volume 1.47gal Well Volume 1.47gal ÷ Pump Rate 0.33gpm = Well Volume Interval 4.456min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 12:42 - Pump End Time 13:12 = Pump Duration 30min Pump Duration 30min x Pump Rate 0.33gpm = Volume Purged 9.9gal Top of Casing Elevation 1452.616 - Static Water Level 9.19 = 1443.426ft

SECTION #3: S	TABILIZATIO	N Well Vol In	terval (min):	4.46	Pump	Rate (gpm):	0.33
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C	
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):
12:47	6.62	0.07	824.1	12.6	436	12.39	9.61
12:52	6.63	0.08	818.2	6.8	423	12.43	9.61
12:57	6.64	0.07	825.0	3.5	400	12.42	9.61
13:02	6.65	0.08	824.4	2.0	391	12.42	9.61
13:07	6.66	0.08	817.8	1.5	384	12.39	9.61
Stabilization P	asses NTS Cr	iteria: 🔽					

Page 2 of 17

MW10 (Cont'd)

MW7

SECTION #1: DATA COLLECTION ☑ Sample Collected Field Duplicate:

Field Blank: Equip Blank:

Time (HH:MM):	p (SU		SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):			
9:46	6.22	1 0.18	2565	16.3	424	9.20			
21.46	Static Water	Level in Water by	Field Measure	ment, ft					
1474.67 Elevation, GW (MSL) in Water by Calculation, ft									
SECTION #2: OI	me: 09:00								
Air Tei	mperature:	41°F to 50°F		M	DH#: 817979				
W	/ind Speed:	10-20 mph		Well Depth	(ft): 26.63				
Wind	d Direction:	W-SW		SWL	(ft): 21.46				
Pre	ecipitation:	None		Pump Rate (gp	om): 0.15				
CI	oud Cover:	Clear		Interval (n	nin): 5.62				
Airborne F	Particulate:	None	Well C	asing Diameter	(in): 2				
Co	olor, Purge:	Orange	Pu	mp Start (HH:N	IM): 9:10				
Appeara	nce, Purge:	Silty	Pu	mp Stop (HH:N	I M): 9:50				
0	dor, Purge:	None	F	Purge Volume (gal): 6.00				
Cole	or, Sample:	Colorless		Purging Strat	egy: Low-Flow	Stabilization			
Appearance	ce, Sample:	Clear		Well Plug Pres	ent: 🗹				
Ode	or, Sample:	None		Well Loc	ked: 🗹				

GW CALCULATIONS:

Total Water Depth 26.63ft - Static Water Level 21.46ft = Water Column 5.17ft Water Column 5.17ft x *Conversion Factor 0.163gal/ft = Well Volume 0.844gal Well Volume 0.844gal ÷ Pump Rate 0.15gpm = Well Volume Interval 5.625min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 09:10 - Pump End Time 09:50 = Pump Duration 40min Pump Duration 40min x Pump Rate 0.15gpm = Volume Purged 6gal Top of Casing Elevation 1496.13 - Static Water Level 21.46 = 1474.67ft

SECTION #3: STABILIZATION Well Vol Interval (min): 5.62					Pump	0.15		
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C		
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):	
9:16	6.13	0.27	2564	60.9	513	8.93	23.00	
9:22	6.15	0.18	2578	21.0	495	9.02	23.00	
9:28	6.17	0.17	2580	17.3	468	8.95	23.02	
9:34	6.19	0.18	2578	18.0	440	9.03	23.00	
9:40	6.21	0.19	2569	17.0	433	9.12	23.00	
9:46	6.21	0.18	2565	16.3	424	9.20	23.00	
Stabilization Passes NTS Criteria: 🔽								

MW7 (Cont'd)

MW8

SECTION #1: DATA COLLECTION ☑ Sample Collected Field Duplicate:

Field Blank: Equip Blank:

Time (HH:MM):	ې (SL		00 L):	SpecCond (µS/cm):	Turbidity (NTU):		ORP (mV):	Temp (°C):	
11:55	6.29 0.1			1869	21.2		297	9.80	
33.72 Static Water Level in Water by I				Field Measure	ment, ft				
1460.69									
SECTION #2: OI	BSERVATION	IS			Ti	me:	10:40		
Air Temperature: 41°F to 50°F					MDH#: 81797				
W	ind Speed:	10-20 mph			Well Depth	(ft):	41.22		
Wind Direction:		W-SW			SWL (ft):			33.72	
Pre	ecipitation:	None			Pump Rate (gp	om):	0.15		
Cl	oud Cover:	Clear			Interval (m	nin):	8.16		
Airborne F	Particulate:	None		Well C	asing Diameter	(in):	2		
Color, Purge:		Orange		Pump Start (HH:MM):			10:35		
Appearance, Purge:		Silty		Pump Stop (HH:MM):			12:08		
Odor, Purge:		None		Purge Volume (gal):			13.95		
Color, Sample:		Colorless			Purging Strategy:			Stabilization	
Appearance, Sample: Cle		Clear	Well Plug Present			ent:			
Odd	or, Sample:	None			Well Loc	ked:			

GW CALCULATIONS:

Total Water Depth 41.22ft - Static Water Level 33.72ft = Water Column 7.5ft Water Column 7.5ft x *Conversion Factor 0.163gal/ft = Well Volume 1.224gal Well Volume 1.224gal ÷ Pump Rate 0.15gpm = Well Volume Interval 8.159min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 10:35 - Pump End Time 12:08 = Pump Duration 93min Pump Duration 93min x Pump Rate 0.15gpm = Volume Purged 13.95gal Top of Casing Elevation 1494.41 - Static Water Level 33.72 = 1460.69ft

SECTION #3: STABILIZATION Well Vol Interval (min): 8.16

Pump Rate (gpm): 0.15

MW8 (Cont'd)

Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C		
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):	
10:43	6.02	0.24	1865	540.0	424	9.06	36.20	
10:51	6.21	0.20	1869	188.3	385	9.03	36.10	
10:59	6.21	0.16	1868	122.2	363	9.08	36.06	
11:07	6.26	0.16	1875	58.8	343	9.22	35.98	
11:15	6.27	0.13	1872	48.8	329	9.50	35.81	
11:23	6.29	0.13	1870	43.8	317	9.60	35.78	
11:31	6.28	0.13	1878	34.4	308	9.66	35.75	
11:39	6.29	0.12	1867	22.2	299	9.71	35.72	
11:47	6.28	0.12	1865	20.9	302	9.77	35.72	
11:55	6.29	0.13	1869	21.2	297	9.80	35.70	
tabilization Da		itorio. 🗖			-			

Stabilization Passes NTS Criteria: 🔽

MW9

SECTION #1: DATA COLLECTION ☑ Sample Collected Field Duplicate:

Field Blank: Equip Blank:

Time (HH:MM):	pł (SU)		SpecCond (µS/cm):	Turbidity (NTU):	OF (mV	•		
14:04	6.50	0.07	1575	2.3	14	9 9.03		
11.20 Static Water Level in Water by I			Field Measurer	nent <i>,</i> ft				
1443.52	Elevation, GV	V (MSL) in Water	by Calculation,	ft				
SECTION #2: OI	BSERVATIONS	5		Ti	i me: 13:26	13:26		
Air Tei	mperature: 5	51°F to 60°F		M	DH#: 817980	817980		
W	/ind Speed: 1	.0-20 mph		Well Depth	(ft): 18.90	18.90		
Wind	Direction: \	W-SW SWL (ft):			(ft): 11.20	11.20		
Precipitation:		None		Pump Rate (gpm):		0.33		
Cloud Cover:		Clear		Interval (n	nin): 3.81			
Airborne Particulate:		lone	asing Diameter	sing Diameter(in): 2				
Color, Purge:		Colorless	Pu	Pump Start (HH:MM):				
Appearance, Purge:		Clear	Pu	mp Stop (HH:N	IM): 14:15	14:15		
Odor, Purge:		lone	F	Purge Volume (gal):		12.87		
Color, Sample: Colorless			Purging Strat	egy: Low-Fl	Low-Flow Stabilization			
Appearance, Sample: Clear			Well Plug Pres	ent: 🗹				
Ode	or, Sample: N	lone		Well Loc	ked: 🗹			

GW CALCULATIONS:

Total Water Depth 18.90ft - Static Water Level 11.20ft = Water Column 7.7ft Water Column 7.7ft x *Conversion Factor 0.163gal/ft = Well Volume 1.257gal Well Volume 1.257gal ÷ Pump Rate 0.33gpm = Well Volume Interval 3.808min *Conversion Factor Formula: ((Pi(([Casing Diameter ft]/2)^2)12)/(12^3))7.48 Pump Start Time 13:36 - Pump End Time 14:15 = Pump Duration 39min Pump Duration 39min x Pump Rate 0.33gpm = Volume Purged 12.87gal Top of Casing Elevation 1454.72 - Static Water Level 11.20 = 1443.52ft

SECTION #3: STABILIZATION Well Vol Interval (min): 3.81						Pump Rate (gpm):		
Spec:	+/- 0.2 SU	+/- 0.2 mg/L	+/- 5 %	<=5 NTU +/- 10 %	+/- 20 mV	+/- 0.2 °C		
Time (HH:MM):	рН (SU):	DO (mg/L):	SpecCond (µS/cm):	Turbidity (NTU):	ORP (mV):	Temp (°C):	SWL (ft):	
13:40	6.45	0.12	1644	55.0	217	8.97	11.56	
13:44	6.59	0.09	1620	27.2	179	9.18	11.56	
13:48	6.47	0.08	1601	16.7	167	8.91	11.56	
13:52	6.48	0.07	1582	8.2	158	8.91	11.56	
13:56	6.49	0.07	1576	5.4	154	8.88	11.56	
14:00	6.49	0.07	1569	4.2	152	8.92	11.56	
14:04	6.50	0.07	1575	2.3	149	9.03	11.56	

S
S

Calibration Report

Event Key: 6385CC_2020 Oct(1 of 1)

Staff: Corey Andrews

Date: 10/5/2020

Post Cal Check: 🗹

Comments:

526 Chestnut Street

Virginia, MN 55792

Phone: (218) 741-4290

Sonde: R04-D	PreCal	PostCal	PostEvent	
Last Temp Check: 6/17/2020	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Specification: +/-0.1 °C	7:15	7:15	16:00	Specifications:
pH:	3.81	4.0	3.82	+/-0.2 SU
Standard (SU):	4.0	4.0	4.0	17-0.2 30
Temperature (°C):	17.72	17.72	18.19	
pH:	7.09	7.03	7.01	+/-0.2 SU
Standard (SU):	7.0	7.0	7.0	17-0.2 30
Temperature (°C):	17.56	17.56	18.13	
pH:	9.97	10.07	10.03	
Standard (SU):	10.0	10.0	10.0	+/-0.2 30
Temperature (°C):	17.54	17.54	18.44	
Conductance, Specific:	0	0	0	Sum of
Standard (µmhos/cm):	0	0	0	+/-1 μmhos/cm
Temperature (°C):	17.47	17.47	18.13	AND
				+/-0.5%
Conductance, Specific:	1001	1000	1004	Sum of
Standard (µmhos/cm):	1000	1000	1000	+/-1 μmhos/cm
Temperature (°C):	17.83	17.83	18.22	AND
				+/-0.5%
Turbidity:	2.0	0.0	0.0	<100 +/-1 NTU
Standard (NTU):	0	0	0	>100 AND <400 +/-12 NTU
Temperature (°C):	17.47	17.47	18.27	>400 AND <3000 +/-150 NTU
Turbidity:	99.3	100.0	103.2	<100 +/-1 NTU
Standard (NTU):	100	100	100	>100 AND <400 +/-12 NTU
Temperature (°C):	17.47	17.47	18.78	>400 AND <3000 +/-150 NTU

Calibration Report (cont'd)

Sonde: R04-D	PreCal	PostCal	PostEvent	
Last Temp Check: 6/17/2020	(HH:MM):	(HH:MM):	(HH:MM):	
Temp Specification: +/-0.1 °C	7:15	7:15	16:00	Specifications:
Oxygen, Dissolved:	8.08	9.09	8.95	<8 +/-0.1 mg/L
100% Oxygen Saturation:	9.06	9.06	8.8	>8 AND <20 +/-0.2 mg/L
Temperature (°C):	17.4	17.4	18.5	>20 +/-10%
Bar.Pressure (mmHg):	719	719	715	
ORP:	444	449	443	+/-20 mV
Standard (mV):	448.9	448.9	448	·/-20111v
Temperature (°C):	17.65	17.65	18.02	

			the second
1 63850C Gen Waste Octobe	er CCR Mar	litoring	10/5/2020
Corey Andrews V#62			101012000
High 62°F / Junny / winds W	SW 10-20 ~	iph	
0715 Prep/Cal/Zoud		<i>ps</i>	
0805 Depart NTS office			
0852 Arrive act Gen Waste			
08571m6 7-1 1947 Sample	alat a A tilati	16 10 1 0 br	4 2106
SWL TWD Volgel	obtained. Well	acked plugged. Key	# 2100
21.46 26.63 0.84	5.17'	SWL AFter	
MIA A		22.90'	
tooland it is a second s	0.15 GPM		
1011 1110 0 -	Spc Turb	ORP TEMP	STWL
	2564 60.9	513 8.93	23.00'
	578 21.0	495 9.02	23.00
0001	580 17.3	468 8,95	23.02'
0.104 0.11 Uits 2	578 18.0	440 9.03	23.00
1 00m 2 0 0 0 0 0	569 17.0	433 9.12	23.00
	565 16.3	424 9.20	23.00
1004 [mw 8] 1156 Sunple obtain	ed. Well plugged	2 Laked. Key #210	Ke internet
SWL TWO WC	Vol(gal) SWL	Aster	
33.72 41.72 7.5	1.22 33	A REAL PROPERTY OF THE REAL PR	
1035 Begin pumping well @ O.	156PM		
Time pt 00 Sp	Turb	ORP TEMP 50	VL
1043 6.02 0.24 1865		124 59.06 36	
1051 6.21 0.20 1869		385 1903 36.	
1059 6.21 0.16 1868		63 9.08 36.	
1107 6.26 0.16 1875		43 9.22 35,9	
1/15 6.27 0.13 1872		29 9,50 35.8	I) I I I I I I I I I I I I I I I I I I
1123 6.29 0.13 18.70		1	and the second
113) 6.28 0.13 1878			the second s
1139 619 012 181-		aa	
1147 6.28 0.12 1865			
1155 6.29 0.13 1860			A REAL PROPERTY AND A REAL
- inn Emilia in in in in	and the second se		and the second se
the second secon			aked- Key # 2121
9.19 18.20 9.01	Vot (gal)	SWL Aster	
1712 0	1.46	9.24'	
1247 6.62 0.07 824,		ORP Temp	SWL
1060 110		436 12.39 9	1.61
1023		123 12.43 0	7.61
1400		00 12.42 0	1.61
1302 6,65 0.08 824,4		91 12.42 9	.(e)
- 1307: 6.66 0.08 FH.9	1.5 32	34 12.39 9	.61
Scale: 1 square =	1.11		0 0

Page 12 of 17

2961	c n	Whet	e Rit	NOOC	CCR	Monitori	ry	10/5/20	20
1000	A los	us V	#67	JUCI		•		1	
igh	170El	Sonny/w	ils ti	ISW 10	1-20 m	oh			
11	mws	TIGAT .	Samale a	blained.	Well loc	ked 3 plu	aged.	1	A
3241	SWL	Th	D 1	J (Vollagel	SWL	After		
1 1 1 1	1100		0 7.	,7' (1.25	11.2	20		
226	R	pumpin						5	
000		pumpin	g were a	Sec.	Turb	ORP	Temp	SWL	
	Time 1340	6.45	8.12	1644	55.0	217	8.97	11.56	
	1344	6.59	0.09	1620	27.2	179	9.18	11.56	
7 E	1348	6.47	0.08	1601	16.7	1.67	8.91	11.56	
1 1	13:52		0.07	1582	8.2	158	8,91	11.56	
	1 2 1	6.48	0.07	1576	5.4	154	8.88	- 11.56	
	1356	6.49	0.07	1569	4.2	152	8.92	11.56	
1	1400	6.49	1	1575	2.3	149	9.03	11.56	
	1404	6.50	0.07	101.0	F. 2	111	6.007	1	
435	HAS	1 1	1	and the set	chel.	1.1.0	und los		
215	Amie	back at	FNIS.	FILL GOL	cocs,	Unload	Venicce 2.		
544	1 1	sumples r							
				~					
			0	\wedge					
			7	1	0				
		/	7	\square	\bigcirc				
		(Jur	H da	Q				
			Jour	Ka	Q				
			Jour	Ka	A				
			Jour	f An	Q				
			Jour	K de	Q. 1.				
			Joury	10/5	Q. 12020)			
			Jour	10/5	Q. 12020				
			Jour	10/5	Q. 12020				
			Joury	10/5	Q 12020				
		(Joury	A. 10/5	Q. 12020				
			Jour	H J. 10/5/	Q 12020				
			Jourg	10/5	Q 12020				
			Joury	10[5]	Q 12020 1				
			Joury	10[5]	Q. 12020				
			Joury	10/5	Q. 12020				
			Joury	10/5	Q. 12020				
			Joury	10/5	Q. 12020				
			Joury	10[5]	Q. 12020 1				
			Joury	10/5	Q. 12020				

NTS 526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290		Vehicle Inspection Report Event Key: 6385CC_2020 Oct(1 of 1)						
Driver: Corey Andrews Vehicle: V62 - 2014 GMC Sierra	1500 #1	Date:	10/5/20	20 Time: 07:45 Odometer:				
Check each Item Inspected								
Driver/Passenger Side External Side Mirrors (Right and Left):	✓ (cl)	Windows ean; free of cracks)		Tires (properly inflated, adequate tread):				
Comments:								
Front/Rear Tail Lights: License Plates Comments:		Head Lights Fluid Leaks		Damage to Body/Bumpers Turn Signals				
Routine Maintenance								
Oil Change (Current):		Transmission Fluid Change every 60k)		Air Filter (Change every 30k):				
Gauges Operational ('check engine' light OFF):	✓ (present	Spare Tire , properly inflated)						
Comments:								
Interior								
Cleanliness: Seat Belts (working condition):		Brakes Parking Brake (reset/release)	9	Windshield Wipers and Fluid: Rearview Mirror:				
Comments:								
General/Safety								
Insurance Card:		Wheel Chocks	: 🗸	First Aid Kit:				
Operator's Manual:		Strobe Light (if needed)		Buggy Whip (if needed):				

Comments:

Deficiencies Corrected

Daily Tailgate Safety

Project: <u>6385</u>C Date: 10/5/2020 Work Site Hazard Assessment Worksheet DPE Required (List): <u>High viz</u> Weather Conditions (List): <u>High 60°F, 55W-10-20 mph, Parthy</u> Claudy Vehicular Traffic Communications **D** Noise Equipment/Tools Housekeeping Other Site Hazards** I have examined the work place named and found no hazards I have examined the work place named and hazards found are listed below with corrective action taken Hazards Identified/Safety Items Discussed: Vehick Safety _____ Haz Mat. **Corrective Actions Taken: Participants in Safety Discussion:**

Print Name	Signature
1. Jon Strasburg	altert.
2. orey Andrews	orenation
3	
4	·
5	
Signature of Site Supervisor/Examiner:	Justaff Date: 106512020

*Level D, C, B or A

**Examples: Heavy Equipment, Air Quality, Flammable materials, Wildlife, Work Site Security, Confine Space

Environmental Science & Engineering		VIR	NTS 526 CHESTNUT STREET VIRGINIA, MN 55792 (218) 741-4290 Fax: (218) 741-4291					RED	TURN-/	PAGE 1 OF 1 CHAIN OF CUSTODY RECORD AROUND TIME: 2 Weeks from submittal date
DEMOLITION &	TE and RECYLING I INDUSTRIAL LANDF JNTY, MINNESOTA		REPORT TO: DENNIS SC	CHUBBE, KARIS	SA VOSEN Y	1&	VOC M. 8260 (HCL)	-	TOTAL METALS (HN03)	SPECIAL INSTRUCTIONS SEE ATTACHED LIST WITH METHODS
DJECT: GENERAL WASTE DISP	122000.000	G, LLC.	PERMIT REQ.:	Oct-20		filtered	VOC M. 8 ENERAL CHEM	GENERAL CHEN	TOTAL MET DISSOLVED M	
DJECT NUMBER: 6385CC	CCR Monitoirng	DESCRIPTION:	COLL DATE:	ECTION: TIME:	MATRIX		U		-	REQUIRED ANALYSIS:
	MW7	GW WELL	10/5/20	6947-	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW8	GW WELL	10/5/20	1156	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW9	GW WELL	10/5/20	1409	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW10	GW WELL	10/5/20	1308	x	N	1		2	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Duplicate	GW WELL	10/5/20	1309	×	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Blank	Field Blank	10/5/20	1315	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
TYQUISHED BY		DATE: (5/4	RECEIVED BY	0-5-20					DATE	
LINQUISHED TO NTS SAMPLE L	OCK-UP BY:	DATE: TIME:	RECEIVED FROM	NTS SAMPLE LO	CKUP BY:				DATE TIME	
CEIVED FOR LAB BY: MAStrin Larr TE:		15:44	TEMP AT ARRIVA	L: C]					

GENERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C

NTS

526 Chestnut Street Virginia, MN 55792 Phone: (218) 741-4290

Field Report Peer Review Report

Event Key: 6385CC_2020 Oct(1 of 1) Report Date: 10/5/2020 Lab WO#: 12151748

Reviewer #1:	Date:
Catherine Hafdahl	10/6/2020

Reviewer #2:	Date:
Terri Sabetti	10/5/2020

Demont Continue	Descripted	الموارد والموار
Report Sections	Required:	Included:
Cover Sheet:	\checkmark	\checkmark
Location Information		
Data Collection:		
Observation:	\checkmark	
Flow or Stabilization:		
Photographs:		
Calibration:	\checkmark	
Field Notes:	\checkmark	\checkmark
Safety Forms:	\checkmark	\checkmark
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		
Consistent Values in Notes:		
Consistent Dates and Times:		\checkmark
No Deviations from SOPs:		
Cover Sheet provides a complete description of key activities and observations:		

Reviewer #1 Comments:

Report Sections	Required :	Included:
Cover Sheet:	\checkmark	\checkmark
Location Information		
Data Collection:	\checkmark	\checkmark
Observation:	\checkmark	\checkmark
Flow or Stabilization:	\checkmark	\checkmark
Photographs:		
Calibration:	\checkmark	\checkmark
Field Notes:	\checkmark	\checkmark
Safety Forms:	\checkmark	\checkmark
	N/A:	OK:
GW Calculations are Accurate:		\checkmark
GW Stabilization Criteria met:		\checkmark
Flow Calculations are Accurate:	\checkmark	
Sonde Passed Post Event Check:		\checkmark
Consistent Values in Notes:		\checkmark
Consistent Dates and Times:		\checkmark
Qualifiers added to Data:	\checkmark	
Data under correct Event Key:		\checkmark
All Req'd Parameters Meas'd; Limits Met:		

Reviewer #2 Comments:

Purging Strategy: Low Flow Stabilization utilized for all wells.

Pace Analytical Services, LLC 315 Chestnut Street Virginia, MN 55792 (218) 735-6700

October 16, 2020

Dennis Schubbe Northeast Technical Services 526 Chestnut Street Virginia, MN 55792

RE: Project: 6385CC General Waste Oct 20 Pace Project No.: 12151748

Dear Dennis Schubbe:

Enclosed are the analytical results for sample(s) received by the laboratory on October 05, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Virginia

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mikki Janve

Nicole Jarve nikki.jarve@pacelabs.com (218) 735-6712 Project Manager

Enclosures

cc: Sample Data, Northeast Technical Services Alan Phillips, Dem-Con Companies Scott Seeley, NTS Karissa Vosen, NTS

CERTIFICATIONS

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

Pace Analytical Services Virginia Minnesota

315 Chestnut Street, Virginia, MN 55792 Montana Certificate #CERT0103 Alaska Certification UST-107 Minnesota Dept of Health Certification #: 027-137-445 North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007

SAMPLE SUMMARY

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

Lab ID	Sample ID	Matrix	Date Collected	Date Received
12151748001	MW7	Water	10/05/20 09:47	10/05/20 15:44
12151748002	MW8	Water	10/05/20 11:56	10/05/20 15:44
12151748003	MW9	Water	10/05/20 14:09	10/05/20 15:44
12151748004	MW10	Water	10/05/20 13:08	10/05/20 15:44
12151748005	Field Duplicate	Water	10/05/20 13:09	10/05/20 15:44
12151748006	Field Blank	Water	10/05/20 13:15	10/05/20 15:44

SAMPLE ANALYTE COUNT

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
12151748001	 MW7	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V
2151748002	MW8	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V
2151748003	MW9	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V
2151748004	MW10	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V
2151748005	Field Duplicate	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V
2151748006	Field Blank	EPA 200.7	AK1	1	PASI-V
		EPA 200.8	DES	1	PASI-V
		SM 2540 C-2011	RC	1	PASI-V
		SM 4500-H+ B-2011	RC	1	PASI-V
		EPA 300.0	KL2	3	PASI-V

PASI-V = Pace Analytical Services - Virginia

Project: 6385CC General Waste Oct 20

Sample: MW7	Lab ID: 121	51748001	Collected:	10/05/2	0 09:47	Received: 10	/05/20 15:44 N	latrix: Water	
Parameters	Results	Units	Report		DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica			tion Met	hod: EP	A 200.7			_
Calcium	521	mg/L		0.50	1	10/07/20 14:45	10/12/20 17:03	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica		•	tion Met	hod: EP	A 200.8			
Boron	71.7	ug/L		40.0	1	10/07/20 14:45	10/15/20 12:46	7440-42-8	
2540C Total Dissolved Solids	Analytical Met Pace Analytica								
Total Dissolved Solids	2370	mg/L		20.0	1		10/07/20 14:13		
4500H+ pH, Electrometric	Analytical Met Pace Analytica			I					
pH at 25 Degrees C	7.1	Std. Units		0.10	1		10/05/20 22:54		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica								
Chloride	19.4	mg/L		1.0	1		10/13/20 08:33		
Fluoride Sulfate	ND 1140	mg/L mg/L		0.10 22.0	1 11		10/13/20 08:33 10/13/20 17:21		
		g .=							
Sample: MW8	Lab ID: 121	51748002	Collected:	10/05/2	0 11:56	Received: 10	/05/20 15:44 N	latrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica			tion Met	hod: EP	A 200.7			
Calcium	360	mg/L		0.50	1	10/07/20 14:45	10/12/20 16:59	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica			tion Met	hod: EP	A 200.8			
Boron	70.3	ug/L		40.0	1	10/07/20 14:45	10/15/20 12:38	7440-42-8	
2540C Total Dissolved Solids	Analytical Met Pace Analytica								
Total Dissolved Solids	1500	mg/L		20.0	1		10/06/20 16:17		
4500H+ pH, Electrometric	Analytical Met Pace Analytica			I					
		Std. Units		0.10	1		10/05/20 22:49		H6
pH at 25 Degrees C	7.2	Siu. Offits							
pH at 25 Degrees C 300.0 IC Anions 28 Days	7.2 Analytical Met Pace Analytica	hod: EPA 30	0.0						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 6385CC General Waste Oct 20

Sample: MW8	Lab ID: 1	12151748002	Collected:	10/05/20) 11:56	Received:	10/05/20 15:44	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
800.0 IC Anions 28 Days	Analytical M	/lethod: EPA 30	0.0						
	Pace Analy	tical Services -	Virginia						
Fluoride	ND	0		0.10	1			9 16984-48-8	
Sulfate	594	mg/L		12.0	6		10/13/20 15:5	8 14808-79-8	
Sample: MW9	Lab ID: 1	12151748003	Collected:	10/05/20	0 14:09	Received:	10/05/20 15:44	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 MET ICP	-	/lethod: EPA 20 tical Services -		tion Meth	od: EP	A 200.7			
Calcium	225	mg/L		0.50	1	10/07/20 14:4	45 10/12/20 17:0	1 7440-70-2	
200.8 MET ICPMS	•	/lethod: EPA 20 tical Services -	•	tion Meth	od: EP	A 200.8			
Boron	42.9	ug/L		40.0	1	10/07/20 14:4	45 10/15/20 12:4	2 7440-42-8	
2540C Total Dissolved Solids		/lethod: SM 254 tical Services -							
Total Dissolved Solids	1200	mg/L		20.0	1		10/06/20 16:1	7	
500H+ pH, Electrometric		/lethod: SM 450 tical Services -		1					
oH at 25 Degrees C	7.2	Std. Units		0.10	1		10/05/20 22:4	6	H6
300.0 IC Anions 28 Days		/lethod: EPA 30 tical Services -							
Chloride	1.5	mg/L		1.0	1		10/13/20 07:3	0 16887-00-6	
Fluoride	ND	5		0.10	1			0 16984-48-8	
Sulfate	471	mg/L		10.0	5		10/13/20 17:0	0 14808-79-8	
Sample: MW10	Lab ID: 1	12151748004	Collected:	10/05/20	0 13:08	Received:	10/05/20 15:44	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 MET ICP		/lethod: EPA 20 tical Services -	•	tion Meth	od: EP	A 200.7			
Calcium	124	mg/L		0.50	1	10/07/20 14:4	45 10/12/20 16:5	1 7440-70-2	
200.8 MET ICPMS	,	/lethod: EPA 20 tical Services -	•	tion Meth	nod: EP	A 200.8			

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748								
Sample: MW10	Lab ID: 121	51748004	Collected: 10/05/	20 13:08	Received: 10	0/05/20 15:44 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	556	mg/L	20.0	1		10/06/20 16:17		
4500H+ pH, Electrometric	Analytical Met Pace Analytica							
pH at 25 Degrees C	7.4	Std. Units	0.10	1		10/05/20 22:24		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Chloride	1.6	mg/L	1.0	1		10/13/20 04:21	16887-00-6	
Fluoride	0.14	mg/L	0.10	1		10/13/20 04:21		
Sulfate	180	mg/L	2.0	1		10/13/20 04:21	14808-79-8	
Sample: Field Duplicate	Lab ID: 121	51748005	Collected: 10/05/	20 13:09	Received: 10)/05/20 15:44 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica		0.7 Preparation Me Virginia	thod: EP	PA 200.7			
Calcium	126	mg/L	0.50	1	10/07/20 14:45	10/12/20 16:49	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica		0.8 Preparation Me Virginia	thod: EP	PA 200.8			
Boron	ND	ug/L	40.0	1	10/07/20 14:45	10/15/20 12:19	7440-42-8	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	568	mg/L	20.0	1		10/06/20 16:17		
4500H+ pH, Electrometric	Analytical Met Pace Analytica							
pH at 25 Degrees C	7.4	Std. Units	0.10	1		10/05/20 22:21		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Chloride	1.6	mg/L	1.0	1		10/13/20 06:27	16887-00-6	
Fluoride	0.14	mg/L	0.10	1		10/13/20 06:27	16984-48-8	
Sulfate	180	mg/L	2.0	1		10/13/20 06:27	14808-79-8	

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

Sample: Field Blank	Lab ID: 121	51748006	Collected: 10/05/2	20 13:15	Received: 10)/05/20 15:44 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical Met Pace Analytica		0.7 Preparation Met Virginia	hod: EF	PA 200.7			
Calcium	ND	mg/L	0.50	1	10/07/20 14:45	10/12/20 16:53	7440-70-2	
200.8 MET ICPMS	Analytical Met Pace Analytica		0.8 Preparation Met Virginia	hod: EF	PA 200.8			
Boron	ND	ug/L	40.0	1	10/07/20 14:45	10/15/20 12:34	7440-42-8	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	ND	mg/L	10.0	1		10/06/20 16:17		
4500H+ pH, Electrometric	Analytical Met Pace Analytica							
pH at 25 Degrees C	5.6	Std. Units	0.10	1		10/05/20 22:42		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Chloride Fluoride Sulfate	ND ND ND	mg/L mg/L mg/L	1.0 0.10 2.0	1 1 1		10/13/20 06:48 10/13/20 06:48 10/13/20 06:48	16887-00-6 16984-48-8 14808-79-8	

Project:	6385CC General V	Vaste Oct 20										
Pace Project No.:	12151748											
QC Batch:	200156		Anal	ysis Metho	d:	EPA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descri	ption:	200.7 MET						
			Labo	oratory:		Pace Analyt	tical Servic	es - Virgini	а			
Associated Lab Sam	nples: 12151748	001, 1215174800	2, 1215174	18003, 121	51748004,	121517480	05, 121517	748006				
METHOD BLANK:	791436			Matrix: W	ater							
Associated Lab Sam	ples: 12151748	001, 1215174800	2, 1215174	18003, 121	51748004,	121517480	05, 121517	748006				
			Blai	nk	Reporting							
Param	neter	Units	Res	ult	Limit	Analy	yzed	Qualifier	S			
Calcium		mg/L		ND	0.5	0 10/12/2	0 16:35					
		-										
LABORATORY CON	ITROL SAMPLE:	791437										
			Spike	LC	S	LCS	% R	ec				
Param	neter	Units	Conc.	Res	sult	% Rec	Limi	ts	Qualifiers			
Calcium		mg/L	25	.2	25.2	10	0 8	85-115		_		
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 7914	38		791439							
			MS	MSD								
		12151824002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
					Descrit	Descrit	0/ 0	% Rec	I include	ססס	ססס	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	6385CC General V	Vaste Oct 20										
Pace Project No.:	12151748											
QC Batch:	200155		Analy	sis Method	d: I	EPA 200.8						
QC Batch Method:	EPA 200.8		Analy	sis Descrip	ption:	200.8 MET						
			Labo	ratory:		Pace Analyti	cal Service	es - Virginia	а			
Associated Lab San	nples: 12151748	001, 1215174800	2, 1215174	8003, 121	51748004,	1215174800	5, 121517	48006				
METHOD BLANK:	791432			Matrix: Wa	ater							
Associated Lab San	nples: 12151748	001, 1215174800	2, 1215174	8003, 121	51748004,	1215174800	5, 121517	48006				
			Blar	nk l	Reporting							
Paran	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	s			
Boron		ug/L		ND	40.	0 10/15/20) 11:49					
LABORATORY CON	NTROL SAMPLE:	791433										
			Spike	LC	S	LCS	% Re	ec				
Paran	neter	Units	Conc.	Res	sult	% Rec	Limit	S	Qualifiers			
-												
Boron		ug/L	5	0	53.3	107	÷ ۲	85-115				
Boron		ug/L	5	0	53.3	107		85-115				
Boron MATRIX SPIKE & M	IATRIX SPIKE DUP		34		53.3 791435	107		35-115				
	IATRIX SPIKE DUP	LICATE: 7914	34 MS	MSD	791435							
MATRIX SPIKE & M		LICATE: 7914 12151893003	34 MS Spike	MSD Spike	791435 MS	MSD	MS	MSD	% Rec	RPD	Max	Qual
		LICATE: 7914 12151893003	34 MS	MSD	791435				Limits	RPD 2	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6385CC General \	Waste Oct 20					
Pace Project No.: 12151748						
QC Batch: 200051		Analysis Me	thod: S	M 2540 C-201	1	
QC Batch Method: SM 2540 C-2011		Analysis De	scription: 2	540C Total Dis	solved Solids	
		Laboratory:	P	ace Analytical	Services - Virg	inia
Associated Lab Samples: 12151748	002, 12151748003	, 12151748004,	12151748005, 1	2151748006		
METHOD BLANK: 790893		Matrix	: Water			
Associated Lab Samples: 12151748	002, 12151748003	, 12151748004,	12151748005, 1	2151748006		
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualif	iers
Total Dissolved Solids	mg/L	ND	10.0	10/06/20 16	:17	
METHOD BLANK: 790897		Matrix	: Water			
Associated Lab Samples: 12151748	002, 12151748003	. 12151748004	12151748005 1	2151748006		
12101140		Blank	Reporting	2.517 10000		
Parameter	Units	Result	Limit	Analyzed	Qualif	iers
Total Dissolved Solids	mg/L	ND	10.0	10/06/20 16	:17	
_ABORATORY CONTROL SAMPLE:	790894	Calles	1.00		0/ Dee	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Quaimers
Total Dissolved Solids	mg/L	250	224	90	80-120	
SAMPLE DUPLICATE: 790895						
		12151705004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	140	120) .	15	5 D6
SAMPLE DUPLICATE: 790896						
SAMILE DOI LIGALE. 750050						
		12151829004	Dup		Max	
Parameter	Units	12151829004 Result	Dup Result	RPD	Max RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 6385CC General W	aste Oct 20					
Pace Project No.: 12151748						
QC Batch: 200139		Analysis Me	thod: S	M 2540 C-201	1	
QC Batch Method: SM 2540 C-2011		Analysis De		540C Total Dis		
		Laboratory:	P	ace Analytical	Services - Virg	nia
Associated Lab Samples: 121517480	01					
METHOD BLANK: 791327		Matrix	: Water			
Associated Lab Samples: 121517480	01					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifi	ers
Total Dissolved Solids	mg/L	ND	10.0	10/07/20 14	:13	
METHOD BLANK: 791331		Matrix	: Water			
Associated Lab Samples: 121517480	01					
121011400		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifi	ers
Total Dissolved Solids	mg/L	ND	10.0	10/07/20 14	:13	
LABORATORY CONTROL SAMPLE:	791328					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	250	254	102	80-120	
SAMPLE DUPLICATE: 791329			_			
	11.5	12151833002	Dup		Max	Qualif
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	1310	1300		1	5
SAMPLE DUPLICATE: 791330						
		12151833009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
T alameter	Office					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	6385CC General	Waste Oct 20						
Pace Project No.:	12151748							
QC Batch:	199979		Analysis Met	hod:	SM 4500-H+ B	-2011		
QC Batch Method:	SM 4500-H+ B-2	2011	Analysis Des	cription:	4500H+B pH			
			Laboratory:		Pace Analytica	I Services - Virg	ginia	
Associated Lab Sa	mples: 12151748	3001, 12151748002	2, 12151748003, 1	2151748004	, 12151748005,	12151748006		
LABORATORY CC	NTROL SAMPLE:	790504						
				LCS	LCS	% Rec		
Para	meter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
pH at 25 Degrees (0	Std. Units	7	7.1	101	98-102	H6	
SAMPLE DUPLICA	ATE: 790505							
SAMPLE DUPLICA	ATE: 790505		12151705001	Dup		Max		
	ATE: 790505 meter	Units	12151705001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Para	meter	Units Std. Units		Result			Qualifiers 10 H6	
SAMPLE DUPLICA Para pH at 25 Degrees (SAMPLE DUPLICA	meter C		Result	Result		RPD		
Para pH at 25 Degrees (meter C		Result	Result		RPD		
Para pH at 25 Degrees (SAMPLE DUPLICA	meter C		Result 6.7	Result 6		0 RPD		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No		CC General W	/aste Oct 20										
QC Batch:	2005	-		Anal	ysis Metho	4· E	EPA 300.0						
QC Batch Method: EPA 300.0			Analysis Descript										
	G. LI7	000.0			pratory:		Pace Analyt		as - Virginia				
Associated Lab	Samples:	121517480	001, 1215174800				,		0	A			
METHOD BLAN	K: 79292	27			Matrix: W	ater							
Associated Lab	Samples:	121517480	001, 1215174800)2, 1215174	48003, 121	51748004, ⁻	121517480	05, 121517	48006				
				Bla	nk	Reporting							
Pa	rameter		Units	Res		Limit	Analy	/zed	Qualifiers	S			
Chloride			mg/L			1.(0 10/13/20	02:57					
Fluoride			mg/L		ND	0.10							
Sulfate			mg/L		ND	2.0	0 10/13/20	0 02:57					
LABORATORY (CONTROL	SAMPLE:	792928										
_				Spike	LC		LCS	% Re					
Pa	rameter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_		
Chloride			mg/L	Ę	50	50.3	10		90-110				
Fluoride			mg/L		5	5.0	100		90-110				
Sulfate			mg/L	Ę	50	50.4	10 ⁻	1 9	90-110				
MATRIX SPIKE	& MATRIX	SPIKE DUPI	LICATE: 7929	29		792930							
				MS	MSD								
			12151748004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
-								0/ D	% Rec	Limits	RPD	RPD	Qual
Paramo	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	/0100				Quai
Chloride	eter	Units mg/L	Result 1.6	Conc. 50	Conc. 50	Result 52.0	Result 53.6	% Rec 101	104	90-110	3	20	Quai
	eter											-	Quai
Chloride	eter	mg/L	1.6	50	50	52.0	53.6	101	104	90-110	3	20	
Chloride Fluoride Sulfate		mg/L mg/L mg/L	1.6 0.14 180	50 5 250	50 5	52.0 5.2 432	53.6 5.4	101 101	104 105	90-110 90-110	3 3	20	Quai
Chloride Fluoride		mg/L mg/L mg/L	1.6 0.14 180	50 5 250	50 5	52.0 5.2	53.6 5.4	101 101	104 105	90-110 90-110	3 3	20	Quai
Chloride Fluoride Sulfate		mg/L mg/L mg/L	1.6 0.14 180	50 5 250	50 5 250	52.0 5.2 432	53.6 5.4	101 101	104 105	90-110 90-110	3 3	20	
Chloride Fluoride Sulfate	& MATRIX	mg/L mg/L mg/L	1.6 0.14 180 LICATE: 7929	50 5 250 931 MS	50 5 250 MSD	52.0 5.2 432 792932	53.6 5.4 424	101 101 101	104 105 98	90-110 90-110 90-110	3 3	20 20	Qual
Chloride Fluoride Sulfate MATRIX SPIKE	& MATRIX	SPIKE DUPI	1.6 0.14 180 LICATE: 7929 12151992004	50 5 250 31 MS Spike Conc.	50 5 250 MSD Spike	52.0 5.2 432 792932 MS	53.6 5.4 424 MSD	101 101 101 MS	104 105 98 MSD	90-110 90-110 90-110 % Rec	332	20 20 Max RPD	
Chloride Fluoride Sulfate MATRIX SPIKE	& MATRIX	mg/L mg/L mg/L SPIKE DUPI	1.6 0.14 180 LICATE: 7929 12151992004 Result	50 5 250 31 MS Spike	50 5 250 MSD Spike Conc.	52.0 5.2 432 792932 MS Result	53.6 5.4 424 MSD Result	101 101 101 MS % Rec	104 105 98 MSD % Rec	90-110 90-110 90-110 % Rec Limits	3 3 2 RPD	20 20 Max RPD 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 6385CC General Waste Oct 20

Pace Project No.: 12151748

Analytical Lab ID **QC Batch Method** QC Batch Batch Sample ID **Analytical Method** 12151748001 MW7 EPA 200.7 200156 EPA 200.7 200239 MW8 12151748002 EPA 200.7 200156 EPA 200.7 200239 12151748003 MW9 EPA 200.7 200156 EPA 200.7 200239 12151748004 **MW10** EPA 200.7 200156 EPA 200.7 200239 **Field Duplicate** 12151748005 EPA 200.7 200156 EPA 200.7 200239 **Field Blank** 200156 12151748006 EPA 200.7 EPA 200.7 200239 MW7 200155 12151748001 EPA 200.8 EPA 200.8 200238 12151748002 MW8 EPA 200.8 200155 EPA 200.8 200238 12151748003 MW9 EPA 200.8 200155 EPA 200.8 200238 **MW10** EPA 200.8 200155 EPA 200.8 200238 12151748004 **Field Duplicate** 12151748005 EPA 200.8 200155 EPA 200.8 200238 12151748006 **Field Blank** EPA 200.8 200155 EPA 200.8 200238 12151748001 MW7 SM 2540 C-2011 200139 MW8 200051 12151748002 SM 2540 C-2011 12151748003 MW9 SM 2540 C-2011 200051 12151748004 **MW10** SM 2540 C-2011 200051 12151748005 **Field Duplicate** SM 2540 C-2011 200051 12151748006 **Field Blank** SM 2540 C-2011 200051 12151748001 MW7 SM 4500-H+ B-2011 199979 12151748002 MW8 SM 4500-H+ B-2011 199979 MW9 12151748003 SM 4500-H+ B-2011 199979 12151748004 **MW10** SM 4500-H+ B-2011 199979 12151748005 **Field Duplicate** SM 4500-H+ B-2011 199979 12151748006 **Field Blank** SM 4500-H+ B-2011 199979 MW7 12151748001 200561 EPA 300.0 MW8 12151748002 EPA 300.0 200561 MW9 12151748003 EPA 300.0 200561 12151748004 **MW10** EPA 300.0 200561 12151748005 **Field Duplicate** EPA 300.0 200561 12151748006 **Field Blank** EPA 300.0 200561

Environmental Science & Engineering			NTS 26 CHESTNUT STREET VIRGINIA, MN 55792 11-4290 Fax: (218) 741-4291			REQU	IIRED	TURN-	WO#: 12151748 PM: NMJ Due Date: 10/19/20 CLIENT: NTS-Dennis	
IENT NAME, ADDRESS, PHONE#: GENERAL WASTE and RECYLING LLC DEMOLITION & INDUSTRIAL LANDFILL ITASCA COUNTY, MINNESOTA			DENNIS SCHUBBE, KARISSA VOSEN & SCOTT SEELEY				VOC M. 8260 (HCL)			SPECIAL INSTRUCTIONS: SEE ATTACHED LIST WITH METHODS
MPLER: Carey Andrews ROJECT. GENERAL WASTE DISPOSAL and RECYCLING, LLC.		PERMIT REQ.: SW-620-002 Oct-20			NERAL CHEMISTE	TOTAL METALS (HN03) DISSOLVED METALS (HN03)				
ROJECT NUMBER: 6385CC	CCR Monitoirng SAMPLE # DESCRIPTION:		COLLECTION: MATRIX			GE	σ		REQUIRED ANALYSIS:	
	MW7	GW WELL	10/5/20	6947	×	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MVV8	GW WELL	10/5/20	1156	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MVV9	GW WELL	10/5/20	1409	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	MW10	GW WELL	10/5/20	1308	×	N	1		2	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Duplicate	GW WELL	10/5/20	1309	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
	Field Blank	Field Blank	10/5/20	1315	x	N	1		1	Boron, Calcium, Chloride, Flouride, pH, Sulfate & TDS
ATTINDUISHED BY		DATE: TIME:	RECEIVED BY	10-5-20					DATE	
LINQUISHED TO NTS SAMPLE	LOCK-UP BY:	DATE: TIME:	RECEIVED FROM	INTS SAMPLE LC	CKUP BY				DATE	
ECEIVED FOR LAB BY: MAStin Jar.	10-5- 11's	20 15:44	TEMP.AT ARRIVA			N. C.		1		
ATE:	TIME:									

61 JO BERGERAL WASTE CCR METHODS

PARAMETER	SYMBOL	EPA Method
Boron	В	200.8
Calcium	Ca	200.7
Chloride	Chloride	300.0
Fluoride	Flouride	300.0
рН	рН	SM 4500 H+B
Sulfate	SO ₄	300.0
TDS	TDS	SM 2540C

Pace Analytical			opon nece	ipt Form	Page 1 of 1			
	F		ent No.: 001-rev.14		Issuing Authority: Pace Virginia Minnesota Quality Office			
Upon Receipt			Project (M	0#:12151748			
Courier: Fed Ex UPS	USPS	V	Client		: NMJ Due Date: 10/19/20 IENT: NTS-Dennis			
stody Seal on Cooler/Box Present?	No Seals	Intact?	Yes	No	Optional: Proj. Due Date: Proj. Name:			
cking Material: 🗌 Bubble Wrap 🗌 Bubb	le Bags	lone	Other:		Temp Blank?			
ermometer Used: 🕅 140792808				Janes				
	Type of I			Blue	None Samples on ice, cooling process has begu			
oler Temp Read °C: <u>3.5</u> Cooler Ter					Biological Tissue Frozen? Yes No			
mp should be above freezing to 6 °C Correction	Factor: 70. 3		Date and	d Initials o	of Person Examining Contents: CAS 10-5-20			
			_	Comme	nts:			
Chain of Custody Present?	Yes	No	□N/A	1.				
Chain of Custody Filled Out?	Ves	No	□n/A	2.				
Chain of Custody Relinquished?	NMJ 10/6/20	No	□N/A	3. No rel	linquished date/time.			
Sampler Name and Signature on COC?	Ves	No	□N/A	4.				
Samples Arrived within Hold Time?	Ves	No	□N/A	5. If F	Fecal: 🔲 <8 hours 🔲 >8, <24 hours 🔲 >24 hours			
Short Hold Time Analysis (<72 hr)?	Yes	No	□N/A	6. pt	+			
Rush Turn Around Time Requested?	Yes	No	□n/A	7.				
Sufficient Volume?	Ves	No	□N/A	8.				
Correct Containers Used?	Ves	No	□n/A	9.				
-Pace Containers Used?	Ves	No	□N/A					
Containers Intact?	Ves	No	□N/A	10.				
Filtered Volume Received for Dissolved Tests?	Yes	No	MN/A	11. Not	te if sediment is visible in the dissolved containers.			
Sample Labels Match COC?	Ves	No	□N/A	12.				
-Includes Date/Time/ID/Analysis Matrix: W1		-	6-61					
All containers needing acid/base preservation prop preserved?	erly Vyes	No	□N/A	13. Not	te samples needing adjustment:			
Headspace in Methyl Mercury Container	Yes	No	MN/A	14.				
Headspace in VOA Vials (>6mm)?	Yes	No	N/A	14.				
Trip Blank Present?	Yes			16.				
Trip Blank Custody Seals Present?	Yes	No	IN/A					
Pace Trip Blank Lot # (if purchased):								
LIENT NOTIFICATION/RESOLUTION					Field Data Required? Yes No			
			à	Date/Time				
Comments/Resolution:								
EE EXCEPTION FORM Y N								
ECAL WAIVER ON FILE Y N		TEM	IPERATU	RE WAI	VER ON FILE Y N 🌙			
					10/1/20			
roject Manager Review: <i>Nikki</i>	anne	samelar	a conv of t	le formui	Date: $\frac{10/6/20}{10}$ III be sent to the North Carolina DEHNR Certification Office (i.e. ou			

APPENDIX B

May 2020 & October 2020 Statistical Evaluation Reports

July 8, 2020

Mr. Jon Penheiter Dem-Con Companies 13020 Dem-Con Drive Shakopee, MN 55379 jonpenheiter@dem-con.com

Sent Via Email

RE: Statistical Analysis for May 2020 groundwater monitoring event for CCR compliance at the Keewatin, MN facility

Mr. Penheiter,

NTS is pleased to submit this report summarizing the CCR monitoring data collected in May, 2020 as well as the statistical analysis completed in accordance with the facility Statistical Analysis Plan (SAP).

MW-3R was included in the initial groundwater monitoring plan but was abandoned during landfill expansion during the summer of 2019. This down-gradient compliance well has been replaced with MW-10 in the groundwater monitoring network. MW-10 was first monitored on May 29, 2020. The first monitoring event included the CCR guidance Appendix III and Appendix IV parameters. Currently, with only 1 sample, upper prediction limits cannot be established for MW-10. MW-10 will continue to be monitored and statistics completed once a sufficient background dataset has been collected.

Since MW-3R, a compliance/downgradient well, was unable to be monitored during the May 2020 event, and since MW-10, the replacement of MW-3R, does not have a sufficient background dataset, a complete evaluation of a Statistically Significant Increase (SSI) as outlined by the site specific Statistical Analysis Plan (SAP) cannot be determined. Therefore, only MW-8 and MW-9 will be assessed for an SSI.

Review of the data shows that no monitoring trigger values were intersected during the May 2020 monitoring event at the compliance/downgradient wells MW-8 and MW-9.

The upgradient well MW-7 has shown trending concentrations over the previous 3 years of monitoring and no longer aligns with the background dataset collected in 2016 and 2017. These trends are not observed in the downgradient compliance wells.

Detection Monitoring

Detection monitoring at the Keewatin facility includes monitoring of 4 groundwater wells, one upgradient well (MW-7) and three downgradient wells (MW-8, MW-9, and MW-10). MW-3R has been replaced by MW-10 beginning in May 2020. Field parameters and laboratory samples were collected on May 6, 2020 at locations MW-8 and MW-9. Field parameters and laboratory samples were collected on May 29, 2020 at locations MW-7 and MW-10. Laboratory results were received

from PACE Analytical on May 19, 2020 and June 23, 2020. Lab analyses completed includes those found in the CCR guidance Appendix III table for locations MW-7, MW-8, and MW-9. Lab analyses for MW-10 included those parameters found in CCR guidance Appendix III and Appendix IV tables (See Appendix C). The monitoring results and the established detection monitoring trigger values can be seen in Tables 1 and 2, respectively. The highlighted cells in Table 1 indicate monitored results above the trigger value (MW-7 Calcium & Total Dissolved Solids (TDS), MW-8 Chloride).

Parameter	MW-7	MW-3R	MW-8	MW-9	MW-10			
Boron (ug/L)	64.7	n/a	71.9	<40	<40			
Calcium (mg/L)	583	n/a	342	206	168			
Chloride (mg/L)	15.8	n/a	1.6	2.1	1.4			
Fluoride (mg/L)	<0.10	n/a	<0.10	<0.10	0.14			
pH (SU)	6.27	n/a	6.30	6.52	6.91			
Sulfate (mg/L)	1420	n/a	547	425	360			
Total Dissolved Solids (mg/L)	2590	n/a	1460	1020	806			

Table 12020 April Detection Monitoring Event Results

Table 2Detection Monitoring Trigger Values (updated January 2020)

Detection monitoring migger values (updated january 2020)									
Parameter	MW-7	MW-3R	MW-8	MW-9	MW-10				
Boron (ug/L)	110.01	n/a	119.29	50	TBD				
Calcium (mg/L)	579.98	n/a	438.4	233.23	TBD				
Chloride (mg/L)	132.82	n/a	1.52	22.65	TBD				
Fluoride (mg/L)	0.11	n/a	0.10	0.10	TBD				
pH (SU)	6.12- 6.79	n/a	6.23 - 7.13	6.23 - 7.13	TBD				
Sulfate (mg/L)	1197.73	n/a	865.08	527.68	TBD				
Total Dissolved Solids (mg/L)	2391.34	n/a	1863.13	1243.1	TBD				

Statistical Analysis

The Statistical Analysis Plan (SAP) for the facility and CCR guidance details that only downgradient wells (compliance wells) are to be analyzed for Statistically Significant Increases (SSIs). The SAP also specifies a 2-sample test be used to determine if an SSI has occurred.

MW-8 indicated an exceedance of detection monitoring trigger value for Chloride. This is the first occurrence of elevated Chloride and therefore does not constitute an SSI.

The May 2020 monitoring data does not indicate that an SSI has occurred at the Keewatin facility. However, the analysis is incomplete since MW-3R is unable to be monitored and the replacement well MW-10 does not have established detection monitoring trigger values determined yet due to an inadequate background size.

MW-7 has shown trending concentrations from 2017 through April 2020. It can be seen that Calcium, TDS, and Sulfate indicate increasing trends; Chloride and Boron indicate decreasing trends. All five parameters are now outside the range observed when conducting background monitoring for the facility in 2016 and 2017.

The observed trends observed in MW-7 and changes in the water chemistry are not reflected in the downgradient compliance wells. The monitored parameters in the downgradient locations MW-8 and MW-9 have remained consistent and are well represented by the background dataset.

The SAP for the facility indicates that the background dataset shall be updated every two years, provided an SSI has not occurred, by including the additional data into the background dataset. Due to the trending values observed in MW-7 as well as MW-7 having significantly higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) compared to the downgradient locations, detection monitoring trigger values for MW-8 and MW-9 were based completely on intrawell analysis (comparing recent measurements from a well to background measurements from the well) instead of interwell analysis (comparing values of MW-7 (upgradient) to MW-8 and MW-9 (downgradient)) when the trigger values were updated in January 2020.

If you have any questions, please contact me at (218) 742-1022.

Sincerely, Northeast Technical Services, Inc.

Em Johnon

Evan C. Johnson, PE Geotechnical Engineer

Appendix A: May 2020 Monitoring Results Appendix B: Statistical Analysis Plan Appendix C: Appendix III & Appendix IV Parameters

GENERAL WASTE & RECYCLING, LLC SW-620 INDUSTRIAL WASTE LANDFILL

Statistical Analysis Plan for Groundwater Monitoring Data

Prepared For:

GENERAL WASTE & RECYCLING, LLC

Prepared by:

Northeast Technical Services, Inc. **526** Chestnut Street Virginia, Minnesota 55792

(218) 741-4290

October 6, 2017

Project Number: 6385CC

"I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete." I certify that this groundwater stasistical analysis plan for the General Waste Industrial Waste Landfill described in this report meets all requirements put forth by 40 CFR §257.93 'Groundwater Sampling and Analysis Requirements.'

Evan Johnson, P.E. Geotechnical Engineer Minnesota License No. 53648

<u>/()-/3-/7</u> Date

Table of Contents

1.0 PURPOSE	1
2.0 INITIAL BACKGROUND MONITORING	1
2.1 BACKGROUND MONITORING PARAMETERS	
2.2 BACKGROUND DATA ANALYSIS	
2.3 ESTABLISHING BACKGROUND DATASET	
2.3.1 Summary Statistics and Distribution	1
2.3.2 Interwell and Intrawell Analysis	2
2.3.3 Upper Prediction Limit	2
2.4 ANALYZING FOR TRENDS	2
2.5 NON-DETECT DATA	3
2.6 OUTLIERS	3
2.7 DUPLICATE SAMPLES	3
3.0 DETECTION MONITORING	3
3.1 STASTICALLY SIGNIFICANT INCREASE	4
3.1.1 Two Sample Test	4
3.1.2 Pracitical monitoring Practice	
3.1.3 Responding to an SSI	
4.0 ASSESSMENT MONITORING	
4.1 MONITORING PARAMETERS	
4.2 GROUNDWATER PROTECTION STANDARD	
4.3 MOVE TO CORRECTIVE ACTION	5
4.4 RETURN TO DETECTION MONITORING	5
5.0 UPDATING BACKGROUND DATA	5

List of Tables

TABLE 1: APPENDIX III PARAMETERSTABLE 2: APPENDIX IV PARAMETERS

List of Figures FIGURE 1: PROJECT LOCATION MAP

1.0 Purpose

Per 40 CFR 257.93 'Groundwater Sampling and Analysis Requirements' (the rule), a statistical procedure for assessing collected groundwater data as to whether or not a release has occurred must implemented at all CCR units. The rule outlines five (5) statistical methods that may be utilized for analyzing collected data. The statistical procedure utilized should account for spatial variance, temporal trends, and address the handling of non-detect data. This Statistical Analysis Plan has been prepared to meet the requirements of the rule and provide the framework for analyzing the collected groundwater data at the General Waste & Recycling, LLC facility (the facility) in Keewatin, Minnesota.

2.0 Initial Background Monitoring

2.1 Background Monitoring Parameters

The rule requires background monitoring of all CCR monitoring wells and eight (8) groundwater monitoring events must be completed prior to October 17, 2017. For this Statistical Analysis Plan, background monitoring includes monitoring for all parameters listed in Appendix III and Appendix IV of 40 CFR 257.93 (see Table 1 and Table 2, respectively).

2.2 Background Data Analysis

Per the rule, within 90 days of collecting the final background dataset, statistical analysis of the data is to be completed. Statistical analysis can be any of those allowed by the rule and should establish a means of determining if a Statistically Significant Inscrease (SSI) of a monitored parameter occurs during operation of the CCR unit to help determine if a leak or release has occurred from the CCR unit.

2.3 Establishing Background Dataset

2.3.1 Summary Statistics and Distribution

Once the final background dataset has been collected, summary statistics should be computed, including mean and variance. An analysis of the data set be conducted to see if data is parametric (normally distributed). A Shapiro-Wilk analysis should be completed to make this determination. This should be completed for each parameter at each well installation. If the data is skewed and does not pass the normality test, the data may be able to be transformed to a normal distribution via lognormal plotting.

If a normal distribution cannot be achieved naturally or by transformation, non-paremetric statistics may be utilized.

2.3.2 Interwell and Intrawell Analysis

It is recommended that the primary method of determining if a SSI has occurred at the site utilize an interwell analysis. This analysis will look at the dataset of the upgradient well (background well) to determine the Upper Prediction Limit (UPL), for the downgradient well concentrations. However, if spatial variation is present in the monitoring system, it may be necessary to assess data from an intrawell analysis. This analysis looks at the background dataset for a specific parameter in the same well to determine if a SSI has occurred. Both methods are viable and can be used for specific parameters. It is not necessary to have a single analysis type for all wells for all parameters at the facility.

Care should be taken when conducting an interwell analysis when the background dataset for downgradient wells may be affected by pre-existing CCR impacts. Given the timeframe of placed CCR materials at the facility, the estimated groundwater velocity, and the monitoring well locations, none of the existing monitoring wells would be expected to exhibit any signs of CCR impact. However, analysis should be completed for any future wells installed.

2.3.3 Upper Prediction Limit

Per the recommendation from the USEPA "Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities Unified Guidance (2009)" (Unified Guidance) document, Upper Prediction Limits (UPL) will be utilized to assess for a SSI in the downgradient wells the facility. The UPL is calculated as follows:

$$UPL = x + ks$$

Where:

x = mean parameter concentration of background dataset

s = standard deviation of background dataset

k = site specific multiplier provided by the Unified Guidance Tables 19, depends on number of wells, number of parameters to be analyzed, size of background dataset

The UPL statistical method allows for both interwell and intrawell comparison.

2.4 Analyzing for Trends

Trends in data may occur due to natural temporal factors, but are not expected to be seen in the initial background dataset. Trend analysis should be completed for the background datasets. If a trend does exist, this should trigger an analysis to assess the potential cause of the trend (especially upward trends of monitored concentrations) and determination of the method to correct for the trend in the statistical approach.

Trend analysis to determine if a statistically significant trend exists can be completed by utilizing the Theil-Sen slope analysis with Mann-Kendall trend test ($\alpha = 0.05$) (non-parametric, more suitable for datasets with >20% non-detect results) or a Ordinary Least Squares (OLS) linear regression with Student's t-test ($\alpha = 0.01$) (parametric dataset, <20% non-detect results).

2.5 Non-Detect Data

Datasets that have less than 20% non-detect data may substitute the reporting limit divided by 2 (RL/2 method) for non-detect results for statistical analysis.

Datasets that contain 20-50% non-detect data must utilize the Kaplan-Meier method to compute summary statistics for the dataset.

Datasets that contain more than 50% non-detect data will not be able to compute summary statistics data reliably. It is recommended that the UPL be set to the highest or second highest observed value.

If all background data are non-detect, than the UPL shall be set to the highest Reporting Limit (RL) (assuming a reasonable RL have been reported that are below MCL concentrations).

2.6 Outliers

The dataset should be analyzed for outlier datapoints. This can be done visually by examining a time series plot of the data or by a box-and-whisker plot. If a datapoint appears to be an outlier, field notes, lab reports, and analysis programs should be checked for indications of erroneous data or transcription erros.

Numerical methods of determining an outlier may include a 3-sigma analaysis for parametric data (data point outside of 3 standard deviations) or the following for non-parametric data if the data point x is:

Where:

$$x > x'_{.75} + 3 * IQR$$

X = individual data point x'.75 = Third Quartile IQR = x'.75 - x'.25 (InterQuartile Range)

Datapoints determined to be outliers due to erroneous data collection may be removed from the dataset. Datapoints that appear to be representative data but are extreme may be excluded from the statistical analysis, but should remain in the data for future evaluation if the data set significantly changes.

2.7 Duplicate Samples

Duplicate samples collected for quality control means should not be included in the statistically analyzed dataset as they are not physically independent and will inappropriately skew the data.

3.0 Detection Monitoring

Following the completion of the background monitoring, detection monitoring will be initiated at the facility. Detection monitoring is to be conducted semiannually (preferably in the spring and

fall) and analyzed for Appendix III parameters only. Statisitcal analysis of the data must be completed within 90 days of receiving laboratory data.

3.1 Stastically Significant Increase

3.1.1 Two Sample Test

Two sample testing indicates that if a UPL (either interwell or intrawell) is exceeded for a parameter, then a second sample should be collected and analyzed. If analysis of the second sample indicates a concentration below the UPL, then a SSI has not occurred. If the second sample indicates a value above the UPL, then a SSI has occurred.

Three Sample Testing which would require 3 consecutive samples to indicate concentrations above the UPL for a SSI to be indicated may be appropriate for specific situations. One situation would be if False Positive readings (Type II error) appears to be exceeding 10% of the total dataset.

3.1.2 Pracitical monitoring Practice

Downgradient constituents should be compared to the established UPL determined from the upgradient well data (for interwell comparisons) or compared to the UPL determined from the segregated background dataset for the individual well (intrawell comparison). If a parameter exceeds a UPL, a second sample should be collected from the well and analyzed. If the second sample indicates a value above the UPL, then it can be determined that a SSI has occurred and Assessment monitoring should be initiated.

3.1.3 Responding to an SSI

If the statistical evaluation indicates a SSI has occurred, the data should be further evaluated to determine if the the SSI is likely caused by a CCR unit release and assessment monitoring should be initiated or if other factors of influence can be demonstrated to be taking effect. This demonstration must be certified by a qualified professional engineer within 90 days of completing the statistical evaluation (in addition to the 90 day requirement for conducting the statistical analysis).

4.0 Assessment Monitoring

Assessment monitoring occurs once evaluation of Detection Monitoring parameters (Appendix III) indicates a SSI and there is reason to believe that the SSI could indicate a release from a CCR unit. Assessment monitoring must begin within 90 days of determining that a SSI related to a potential release of the CCR unit has occurred.

4.1 Monitoring Parameters

The initial assessment monitoring event must include all parameters listed in Appendix III and Appendix IV of 40 CFR 257.93 at all monitoring well locations. Subsequent monitoring events may include Appendix III parameters and only the Appendix IV parameters that were detected in the initial monitoring event. Assessment monitoring will also be conducted on a semi-annual basis (e.g., spring and fall monitoring events).

4.2 Groundwater Protection Standard

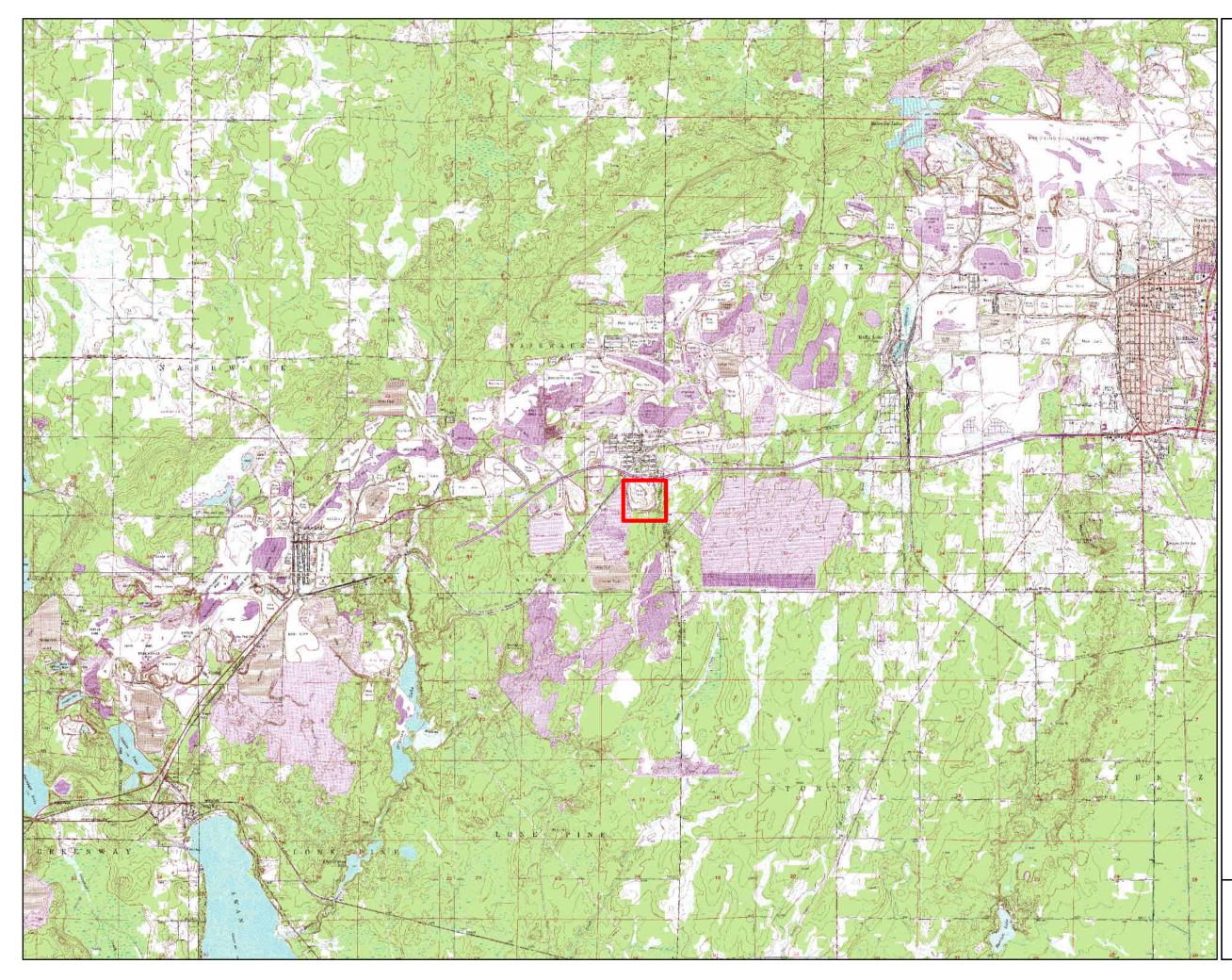
A Groundwater Protection Standard (GWPS) must be established for each Appendix IV parameter. For parameters for which the USEPA has established a Maximum Contaminant Level (MCL), the MCL (shown on Tables 1 and 2) shall be used for the GWPS. For the parameters for which a MCL has not been established, then the Upper Tolerance Limit (UTL) ($\alpha = 0.05$, 95% coverage) of the parameter utilizing the upgradient (background) well(s) shall be utilized to establish a GWPS for the specific parameter. This determined UTL concentration shall be applied site-wide for all downgradient wells.

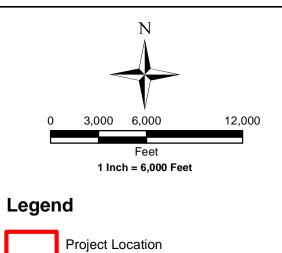
4.3 Move to Corrective Action

The UPL and UTL are useful to assess for a SSI or measurable increase above background. However, in order to assess if a dataset has stastically exceeded a set value (the GWPS), Confidence Limits would be the most appropriate. If the Lower Confidence Limit (LCL) of the Assessment Monitoring dataset exceeds the GWPS, then movement into Corrective Action is warranted.

This Statistical Analysis Plan does not address Corrective Action methods of monitoring. Corrective Action methods will be developed if required per the rule..

4.4 Return to Detection Monitoring


Assessment monitoring may cease and detection monitoring be re-initiated when all Appendix III and monitored Appendix IV parameters are below background (upgradient well) concentrations.


5.0 Updating Background Data

Background datasets should be updated every 2 years assuming that a SSI has not occurred. A Student t-test (α =0.01, parametric) or Mann-Whitney (α = 0.05, non-parametric) should be utilized to assess if the existing background dataset and the dataset to be added to the background dataset are statiscically different. If the data is shown not to be significantly different, the dataset should be pooled and the background dataset updated. If analysis of the data using the t-test or Mann-Whitney test indicates a statistical difference, the data should be analyzed to determine a potential cause for the stastistically significant difference.

TABLE 1 Appendix III Parameters				
Parameter MCL				
Boron	NA			
Calcium	NA			
Chloride	NA			
Fluoride	4.0 mg/L			
pH	NA			
Sulfate	NA			
Total Dissolved Solids (TDS)	NA			


TABLE 2 Appendix IV Parameters				
Parameter MCL				
Antimony	0.006 mg/L			
Arsenic	0.01 mg/L			
Barium	2.0 mg/L			
Beryllium	0.004 mg/L			
Cadmium	0.10 mg/L			
Chromium	0.10 mg/L			
Cobalt	NA			
Fluoride	4.0 mg/L			
Lead	0.015 mg/L			
Lithium	NA			
Mercury	0.002 mg/L			
Molybdenum	NA			
Selenium	0.05 mg/L			
Thallium	0.002 mg/L			
Radium 226 and 228 combined	5 pCi/L			

Notes:

-Background image has been provided by MNGEO Web Services

Figure 1 Site Location Map

General Waste Industrial Landfill Statistical Analysis Plan Certification Keewatin, MN (St. Louis)

Date Drawn :		
October 4, 2017		
Drawn By :		
Evan Johnson		
NTS Project #:		
6385CC		

TABLE 1 Appendix III Parameters				
Parameter MCL				
Boron	NA			
Calcium	NA			
Chloride	NA			
Fluoride	4.0 mg/L			
pH	NA			
Sulfate	NA			
Total Dissolved Solids (TDS)	NA			

TABLE 2 Appendix IV Parameters				
Parameter MCL				
Antimony	0.006 mg/L			
Arsenic	0.01 mg/L			
Barium	2.0 mg/L			
Beryllium	0.004 mg/L			
Cadmium	0.10 mg/L			
Chromium	0.10 mg/L			
Cobalt	NA			
Fluoride	4.0 mg/L			
Lead	0.015 mg/L			
Lithium	NA			
Mercury	0.002 mg/L			
Molybdenum	NA			
Selenium	0.05 mg/L			
Thallium	0.002 mg/L			
Radium 226 and 228 combined	5 pCi/L			

January 11, 2020

Mr. Jon Penheiter Dem-Con Companies 13020 Dem-Con Drive Shakopee, MN 55379 jonpenheiter@dem-con.com

Sent Via Email

RE: Statistical Analysis for October 2020 groundwater monitoring event for CCR compliance at the Keewatin, MN facility

Mr. Penheiter,

NTS is pleased to submit this report summarizing the CCR monitoring data collected in October, 2020 as well as the statistical analysis completed in accordance with the facility Statistical Analysis Plan (SAP).

MW-3R was included in the initial groundwater monitoring plan but was abandoned during landfill expansion during the summer of 2019. This down-gradient well has been replaced with MW-10 in the groundwater monitoring network. MW-10 was first monitored on May 29, 2020. The first monitoring event included the CCR guidance Appendix III and Appendix IV parameters. MW-10 was monitored again in October, 2020, for CCR guidance Appendix III parameters. Currently, with 2 samples, upper prediction limits cannot be established for MW-10. MW-10 will continue to be monitored and statistics completed once a sufficient background dataset has been collected, which is anticipated to be 8 samples.

Since MW-3R, a compliance/downgradient well, was unable to be monitored during the October 2020 event, and since MW-10, the replacement of MW-3R, does not have a sufficient background dataset, a complete evaluation of a Statistically Significant Increase (SSI) as outlined by the site specific Statistical Analysis Plan (SAP) cannot be determined. Therefore, only MW-8 and MW-9 will be assessed for an SSI.

Review of the data shows that no monitoring trigger values were intersected during the October, 2020 monitoring event at the compliance/downgradient wells MW-8 and MW-9.

The upgradient well MW-7 has shown trending concentrations over the previous 3 years of monitoring. However, the October 2020 measurements indicated generally steady state conditions when compared to the April 2020 monitoring results.

Detection Monitoring

Detection monitoring at the Keewatin facility includes monitoring of 4 groundwater wells, one upgradient well (MW-7) and three downgradient wells (MW-8, MW-9, and MW-10). MW-3R was replaced by MW-10 in 2020. Field parameters and laboratory samples were collected on October 5, 2020. Laboratory results were received from PACE Analytical on October 16, 2020. Lab

analyses completed includes those found in the CCR guidance Appendix III table (See Appendix C). The monitoring results and the established detection monitoring trigger values can be seen in Tables 1 and 2, respectively. No results from the October 2020 event exceeded detection monitoring trigger values.

2020 October Detection Monitoring Event Results					
Parameter	MW-7	MW-3R	MW-8	MW-9	MW-10
Boron (ug/L)	71.7	n/a	70.3	< 40.0 (Non-Detect)	<40.0
Calcium (mg/L)	521	n/a	360	217	124
Chloride (mg/L)	19.4	n/a	<1.0	6.0	1.6
Fluoride (mg/L)	<0.10 (Non-Detect)	n/a	<0.10 (Non-Detect)	<0.10 (Non-Detect)	0.14
pH (SU)	6.21	n/a	6.29	6.53	6.66
Sulfate (mg/L)	1140	n/a	594	467	180
Total Dissolved Solids (mg/L)	2370	n/a	1500	1100	556

Table 1 2020 October Detection Monitoring Event Results

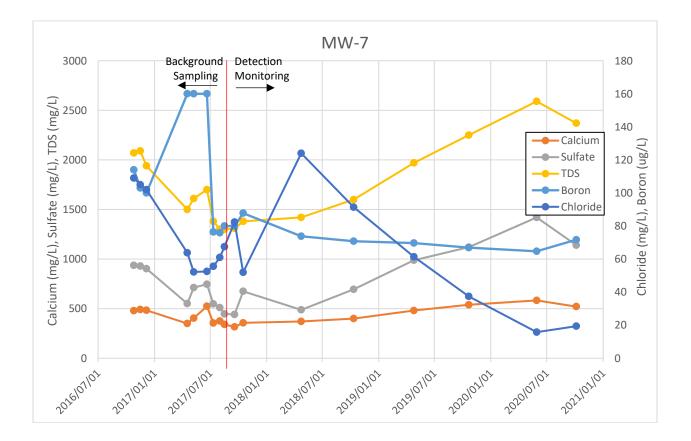
Detection Monitoring Trigger Values (updated January 2020)						
Parameter	MW-7	MW-7 MW-3R MW-8 MW-9 MW-1				
Boron (ug/L)	110.01	n/a	119.29	50	TBD	
Calcium (mg/L)	579.98	n/a	438.4	233.23	TBD	
Chloride (mg/L)	132.82	n/a	1.52	22.65	TBD	
Fluoride (mg/L)	0.11	n/a	0.10	0.10	TBD	
pH (SU)	6.12- 6.79	n/a	6.23 - 7.13	6.23 - 7.13	TBD	
Sulfate (mg/L)	1197.73	n/a	865.08	527.68	TBD	
Total Dissolved Solids (mg/L)	2391.34	n/a	1863.13	1243.1	TBD	

Table 2Detection Monitoring Trigger Values (updated January 2020)

Statistical Analysis

The Statistical Analysis Plan (SAP) for the facility and CCR guidance details that only downgradient wells (compliance wells) are to be analyzed for Statistically Significant Increases (SSIs). The SAP also specifies a 2-sample test be used to determine if an SSI has occurred.

The October 2020 monitoring data does not indicate that an SSI has occurred at the Keewatin facility. However, the analysis is incomplete since MW-3R is unable to be monitored and the



replacement well MW-10 does not have established detection monitoring trigger values determined yet due to an inadequate background size.

MW-7 has shown trending concentrations from 2017 through April 2020. It can be seen that Calcium, TDS, and Sulfate indicate increasing trends; Chloride and Boron indicate decreasing trends. All five parameters are now outside the range observed when conducting background monitoring for the facility in 2016 and 2017. The October 2020 event did indicate a break in the observed trends for all parameters.

The observed trends observed in MW-7 and changes in the water chemistry are not reflected in the downgradient compliance wells). The monitored parameters in the downgradient locations MW-8 and MW-9 have remained consistent and well represented by the background dataset.

The SAP for the facility indicates that the background dataset shall be updated every two years, provided an SSI has not occurred, by including the additional data into the background dataset. Due to the trending values observed in MW-7 as well as MW-7 having significantly higher concentrations of Calcium, Chloride, Sulfate, and Total Dissolved Solids (TDS) compared to the downgradient locations, detection monitoring trigger values for MW-8 and MW-9 were based completely on intrawell analysis (comparing recent measurements from a well to background measurements from the well) instead of interwell analysis (comparing values of MW-7 (upgradient) to MW-8 and MW-9 (downgradient)) when the trigger values were updated in January 2020.

CCR Statistical Analysis for October 2020 Event Dem-Con Companies Keewatin, MN Page **4** of **4**

If you have any questions, please contact me at (218) 742-1022.

Sincerely, Northeast Technical Services, Inc.

Em Shing 1-11-21

Evan C. Johnson, PE Geotechnical Engineer

Appendix A: October 2020 Monitoring Results Appendix B: Statistical Analysis Plan Appendix C: Appendix III Parameters

APPENDIX C

2020 UPDATE OF BACKGROUND DATASET RATIONALE/WORKFLOW

A two year period of detection monitoring was completed at General Waste CCR Facility. The Statistical Analysis Plan (SAP) indicates the background dataset should be assessed following a two year period and detection monitoring added to the background dataset if not statistically different and if no Statistically Significant Increase (SSI) has occurred. The following outlines the process followed to assess the detection/background monitoring results for the Appendix III parameters (Boron, Calcium, Chloride, Fluoride, Sulfate, TDS, pH).

- 1.) Complete time series Plots for all 4 CCR wells at the facility to allow for visual assessment of Detection monitoring as it relates to background monitoring data.
 - a. MW-7 indicates large trends in Chloride, TDS, and Sulfate, with Chloride decreasing, and TDS & Sulfate increasing
 - b. MW-3R indicates decreasing trends in Calcium, Boron, Sulfate, and TDS
 - c. MW-8 and MW-9 Detection datasets appear generally consistent with background datasets
- 2.) A Students T-Test (STT) was conducted (α =.01)(no Non-detects) or Tarone-Ware (TW) (α =.01)(with Non-detects) to assess if the background dataset and detection monitoring dataset were statistically different or not. If the p-value is not less than 0.01, the background and detection monitoring datasets are not statistically different.
 - a. MW-7
 - i. Boron (TW): p=.02>.01, not statistically different, but close due to large non-detects in background dataset
 - ii. Calcium (STT): p=.58
 - iii. Chloride (STT): p=.81
 - iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no change
 - v. Sulfate (STT): p=.38
 - vi. TDS (STT): p=.45
 - vii. pH (STT): p=.93

b. **MW-3R**

- i. Boron (TW): p=.07
- ii. Calcium (STT): p=.001, IS STATISTICALLY DIFFERENT. The Calcium results at MW-3R have been continually decreasing from the initial background monitoring. The cause for this is unknown. MW-3R was abandoned in 2019 and will no longer be monitored, therefore there is limited value for further assessment.
- iii. Chloride (STT): p=.02, not statistically different, but close, Chloride concentrations are elevated in the detection monitoring as compared to the background monitoring
- iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no change
- v. Sulfate (STT): p=0, IS STATISTIALLY DIFFERENT. All three Detection monitoring events indicated Sulfate concentrations below those observed in the initial background monitoring. The cause for this is unknown. MW-3R was abandoned in 2019 and will no longer be monitored, therefore there is limited value in further assessment.
- vi. TDS (STT): p=.001, IS STATISTICALLY DIFFERENT, very similar to Sulfate
- vii. pH (STT): p=.85

c. MW-8

- i. Boron (TW): p=.51
- ii. Calcium (STT): p=.001, IS STATISTICALLY DIFFERENT. 3 of the 4 Detection monitoring results were considerably below the background detection monitoring results (~12% below). However, the concentration appears to be increasing to be consistent with the background dataset. Will add Detection monitoring values to background data even though they are shown to be less than the background dataset, statistically.
- iii. Chloride (STT): p=.009, IS STATISTICALLY DIFFERENT. 3 of the 4 Detection monitoring results were considerably HIGHER than the background dataset with a mean of 1.3 mg/L as compared to the background dataset mean of 1.1. (~20% higher). However, the very low concentrations make meaningful assessment difficult. Additionally, the upgradient well MW-7 has much higher Chloride concentrations (mean of 75 mg/L). Therefore, it would be very difficult to discern impact from upgradient watershed vs. the CCR unit. Chloride monitoring has limited value for our particular site.
- iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no change
- v. Sulfate (STT): p=0, IS STATISTICALLY DIFFERENT. All 4 Detection monitoring results were considerably below the background detection monitoring results with a mean of 600 mg/L as compared to 740 mg/L (~23% below). The Detection monitoring concentrations appear very stable with no trend and low deviation. Will add Detection monitoring values to background data even though they are shown to be less than the background dataset, statistically.
- vi. TDS (STT): p=.001. IS STATISTICALLY DIFFERENT. Very similar to Sulfate results, only 17% difference between background and detection mean.
- vii. pH (STT): p=.78, not statistically different.
- d. MW-9
 - i. Boron (n/a): Nearly all non-detect, cannot conduct statistics, but no obvious change
 - ii. Calcium (STT): p=.26
 - iii. Chloride (STT): p=.08
 - iv. Fluoride (n/a): Nearly all non-detect, cannot conduct statistics, but no obvious change
 - v. Sulfate (STT): p=.414
 - vi. TDS (STT): p=.77
 - vii. pH (STT): p=.85
- 3.) Added Detection Monitoring results to 'background' dataset, despite statistical difference. Reasons discussed at each bullet point above.
- 4.) Due to the stark difference in behavior of MW-7 (upgradient) well with all downgradient wells (MW-3R, MW-8, MW-9), interwell analysis will no longer be performed between the upgradient and downgradient wells. Intrawell analyses will be conducted for MW-8 and MW-9. MW-3R will no longer be updated since it is abandoned. Additionally, intrawell analysis will be completed for MW-7 to assess for changes in the upgradient watershed, even though the upgradient well is not assessed for Statistically Significant Increases (SSIs).
- 5.) Check all updated 'background' datasets for normality utilizing Robust Regression on order Statistics (ROS) to analyze datasets
 - a. Removed high non-detects from MW-7 Boron results, then dataset is normal.

- b. Removed high non-detects from MW-8 Boron results, then dataset is normal.
- c. Remove pH reading from 7/11/17 for all datasets, suspect pH, faulty equipment, bad reading. Without outlier, all pH datasets are normal.
- 6.) Determine Upper Prediction Limits (UPLs) for each parameter at each well using 2-sample, UPL at p=95 with ProUCL. See Table 2

a.	Utilize ROS Normal distribution for data with non-detects	
----	---	--

Table 1: Previous UPLs					
Parameter	MW-7	MW-3R	MW-8	MW-9	
Boron (ug/L)	87.8	130.1	87.8	87.8	
Calcium (mg/L)	506.7	667.5	506.7	506.7	
Chloride (mg/L)	81.94	81.94	81.94	81.94	
Fluoride (mg/L)	0.11	0.11	0.11	0.11	
pH (SU)	6.286 - 6.814	6.286 - 6.814	6.286 - 6.814	6.286 - 7.318	
Sulfate (mg/L)	811.1	1937	811.1	811.1	
Total Dissolved Solids (mg/L)	1742	3571	1742	1742	

Table 2: Updated UPLs Based on ProUCL only					
Parameter	MW-7	MW-3R	MW-8	MW-9	
Boron (ug/L)	113.5	n/a	100.8	50	
Calcium (mg/L)	590.7	n/a	442.4	235.3	
Chloride (mg/L)	136.9	n/a	1.50	23.59	
Fluoride (mg/L)	0.11	n/a	0.11	0.11	
pH (SU)	5.97 – 6.67	n/a	6.03 - 6.74	6.286 - 7.318	
Sulfate (mg/L)	1231	n/a	877.2	534.3	
Total Dissolved Solids (mg/L)	2441	n/a	1884	1256	

7.) Determine UPL for each parameter at each well using Table 19 of the unified guidance with 1 of 2 sample, 3 wells, 12 background samples, 7 COCs, semi-annual assessment. See Table 3 Below.

Table 3: Updated UPLs Based on Unified Guidance Table 19					
Parameter	MW-7	MW-3R	MW-8	MW-9	
Boron (ug/L)	110.01	n/a	119.29	50.00	
Calcium (mg/L)	579.98	n/a	438.40	233.23	
Chloride (mg/L)	132.82	n/a	1.52	22.65	
Fluoride (mg/L)	0.11	n/a	0.10	0.10	
pH (SU)	6.12 - 6.79	n/a	6.23-7.13	6.23-7.13	
Sulfate (mg/L)	1197.73	n/a	865.08	527.68	
Total Dissolved		nla			
Solids (mg/L)	2391.34	n/a	1863.13	1243.10	

8.) The 2 methodologies utilized to calculate UPLs exhibit similar results. The UPLs determined by the Unified Guidance will be utilized as the monitoring limits for the next 2 years. This methodology is specifically laid out in the Unified Guidance Rule and is therefore more defensible.